Scaling theory of heat transport in quasi-one-dimensional disordered harmonic chains.

dc.citation.issue2
dc.citation.volume87
dc.contributor.authorBodyfelt JD
dc.contributor.authorZheng MC
dc.contributor.authorFleischmann R
dc.contributor.authorKottos T
dc.date.available4/02/2013
dc.date.issued2013-02
dc.description.abstractWe introduce a variant of the banded random matrix ensemble and show, using detailed numerical analysis and theoretical arguments, that the phonon heat current in disordered quasi-one-dimensional lattices obeys a one-parameter scaling law. The resulting β function indicates that an anomalous Fourier law is applicable in the diffusive regime, while in the localization regime the heat current decays exponentially with the sample size. Our approach opens a new way to investigate the effects of Anderson localization in heat conduction based on the powerful ideas of scaling theory.
dc.description.publication-statusPublished
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000314767100001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=c5bb3b2499afac691c2e3c1a83ef6fef
dc.identifierARTN 020101
dc.identifier.citationPHYSICAL REVIEW E, 2013, 87 (2)
dc.identifier.doi10.1103/PhysRevE.87.020101
dc.identifier.eissn1550-2376
dc.identifier.elements-id197823
dc.identifier.harvestedMassey_Dark
dc.identifier.issn1539-3755
dc.identifier.urihttps://hdl.handle.net/10179/7471
dc.relation.isPartOfPHYSICAL REVIEW E
dc.subject.anzsrc01 Mathematical Sciences
dc.subject.anzsrc02 Physical Sciences
dc.subject.anzsrc09 Engineering
dc.titleScaling theory of heat transport in quasi-one-dimensional disordered harmonic chains.
dc.typeJournal article
pubs.notesNot known
pubs.organisational-group/Massey University
pubs.organisational-group/Massey University/College of Sciences
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bodyfelt_scaling_2013.pdf
Size:
507 KB
Format:
Adobe Portable Document Format
Description:
Collections