Weighted adjacent matrix for K-means clustering
dc.citation.issue | 23 | |
dc.citation.volume | 78 | |
dc.contributor.author | Zhou J | |
dc.contributor.author | Liu T | |
dc.contributor.author | Zhu J | |
dc.date.available | 2019-12 | |
dc.date.issued | 2019-12 | |
dc.description | CAUL read and publish agreement 2022 | |
dc.description.abstract | K-means clustering is one of the most popular clustering algorithms and has been embedded in other clustering algorithms, e.g. the last step of spectral clustering. In this paper, we propose two techniques to improve previous k-means clustering algorithm by designing two different adjacent matrices. Extensive experiments on public UCI datasets showed the clustering results of our proposed algorithms significantly outperform three classical clustering algorithms in terms of different evaluation metrics. | |
dc.description.publication-status | Published | |
dc.format.extent | 33415 - 33434 | |
dc.identifier | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000500000600039&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=c5bb3b2499afac691c2e3c1a83ef6fef | |
dc.identifier.citation | MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (23), pp. 33415 - 33434 | |
dc.identifier.doi | 10.1007/s11042-019-08009-x | |
dc.identifier.eissn | 1573-7721 | |
dc.identifier.elements-id | 425429 | |
dc.identifier.harvested | Massey_Dark | |
dc.identifier.issn | 1380-7501 | |
dc.identifier.uri | https://hdl.handle.net/10179/17429 | |
dc.publisher | Springer Science+Business Media, LLC | |
dc.relation.isPartOf | MULTIMEDIA TOOLS AND APPLICATIONS | |
dc.subject | k-means clustering | |
dc.subject | Similarity measurement | |
dc.subject | Adjacent matrix | |
dc.subject | Unsupervised learning | |
dc.subject.anzsrc | 0803 Computer Software | |
dc.subject.anzsrc | 0805 Distributed Computing | |
dc.subject.anzsrc | 0806 Information Systems | |
dc.subject.anzsrc | 0801 Artificial Intelligence and Image Processing | |
dc.title | Weighted adjacent matrix for K-means clustering | |
dc.type | Journal article | |
pubs.notes | Not known | |
pubs.organisational-group | /Massey University | |
pubs.organisational-group | /Massey University/College of Sciences | |
pubs.organisational-group | /Massey University/College of Sciences/School of Mathematical and Computational Sciences |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Weighted adjacent matrix for K-means clustering.pdf
- Size:
- 2.64 MB
- Format:
- Adobe Portable Document Format
- Description: