Interacting Roles of Breeding Geography and Early-Life Settlement in Godwit Migration Timing

dc.citation.volume8
dc.contributor.authorBattley PF
dc.contributor.authorConklin JR
dc.contributor.authorParody-Merino ÁM
dc.contributor.authorLanglands PA
dc.contributor.authorSouthey I
dc.contributor.authorBurns T
dc.contributor.authorMelville DS
dc.contributor.authorSchuckard R
dc.contributor.authorRiegen AC
dc.contributor.authorPotter MA
dc.date.available2020-03-17
dc.date.issued2020-03-17
dc.description.abstractWhile avian migration timing is clearly influenced by both breeding and non-breeding geography, it is challenging to identify the relative and interdependent roles of endogenous programs, early-life experience, and carry-over effects in the development of adult annual schedules. Bar-tailed godwits Limosa lapponica baueri migrate northward from New Zealand toward Asian stopover sites during the boreal spring, with differences in timing between individuals known to relate to their eventual breeding-ground geography in Alaska. Here, we studied the timing of northward migration of individual godwits at three sites spanning 1,100 km of New Zealand’s 1,400-km length. A lack of morphological or genetic structure among sites indicates that the Alaskan breeding population mixes freely across all sites, and larger birds (southern breeders) tended to migrate earlier than smaller birds (northern breeders) at all sites. However, we unexpectedly found that migration timing varied between the sites, with birds from southern New Zealand departing on average 9.4–11 days earlier than birds from more northerly sites, a difference consistent across 4 years of monitoring. There is no obvious adaptive reason for migration timing differences of this magnitude, and it is likely that geographic variation in timing within New Zealand represents a direct response to latitudinal variation in photoperiod. Using resightings of marked birds, we show that immature godwits explore widely around New Zealand before embarking on their first northward migration at age 2–4 years. Thus, the process by which individual migration dates are established appears to involve: (1) settlement by sub-adult godwits at non-breeding sites, to which they are highly faithful as adults; (2) a consequent response to environmental cues (i.e., photoperiod) that sets the local population’s migration window; and (3) endogenous mechanisms, driven by breeding geography, that establish and maintain the well-documented consistent differences between individuals. This implies that behavioral decisions by young godwits have long-lasting impacts on adult annual-cycle schedules, but the factors guiding non-breeding settlement are currently unknown.
dc.description.publication-statusPublished
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000525623100001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=c5bb3b2499afac691c2e3c1a83ef6fef
dc.identifierARTN 52
dc.identifier.citationFRONTIERS IN ECOLOGY AND EVOLUTION, 2020, 8
dc.identifier.doi10.3389/fevo.2020.00052
dc.identifier.elements-id431608
dc.identifier.harvestedMassey_Dark
dc.identifier.issn2296-701X
dc.publisherFrontiers Media SA
dc.relation.isPartOfFRONTIERS IN ECOLOGY AND EVOLUTION
dc.rightsCopyright © 2020 Battley, Conklin, Parody-Merino, Langlands, Southey, Burns, Melville, Schuckard, Riegen and Potter. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
dc.subjectgeolocation
dc.subjectmigration timing
dc.subjectphenology
dc.subjectphotoperiod
dc.subjectScolopacidae
dc.subject.anzsrc0602 Ecology
dc.subject.anzsrc0603 Evolutionary Biology
dc.titleInteracting Roles of Breeding Geography and Early-Life Settlement in Godwit Migration Timing
dc.typeJournal article
pubs.notesNot known
pubs.organisational-group/Massey University
pubs.organisational-group/Massey University/College of Sciences
pubs.organisational-group/Massey University/College of Sciences/School of Natural Sciences
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
battley et al 2020 geography settlement migration timing godwits Front Ecol Evol fevo-08-00052.pdf
Size:
2.91 MB
Format:
Adobe Portable Document Format
Description:
Collections