Redox-induced phosphorus release from critical source areas following rainfall events in New Zealand

Loading...
Thumbnail Image

DOI

Open Access Location

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Ltd, United Kingdom

Rights

(c) The author/s
CC BY

Abstract

Critical source areas (CSAs) can act as a source of phosphorus (P) during intermittent rainfall events and contribute to dissolved P loss via runoff. Dissolved forms of P are readily accessible for plant and algal uptake; hence it is a concern in terms of the eutrophication of freshwater bodies. The potential of CSAs to release dissolved P to surface runoff upon intermittent short-term submergence caused by different rainfall events has not been studied at a field-scale in New Zealand previously. A field study was conducted to investigate the potential of two different pastoral soil CSAs (Recent and Pallic soil) to release soil P over five rainfall events during winter and to explore the mechanisms of P release in these soils. Ten sampling stations were installed within each CSA in an area of 6 × 2 m2. Each sampling station had two porewater samplers installed at two depths (2 and 10 cm) below the soil surface. Two platinum half-cell electrodes were installed at the same two depths. Porewater and floodwater samples were collected following five rainfall events. Redox potentials were measured in-situ. Dissolved reactive phosphorus (DRP), pH, dissolved organic carbon, cations, anions, and alkalinity of the water samples were measured. Soil chemical P fractions were assessed at the beginning, middle and end of the experiment. Thermodynamic modelling was used to infer dissolution and formation of P and P-associated minerals. The average porewater DRP at the two depths during the rainfall events of the Recent and Pallic soils were 0.32-1.3 mg L-1 and 0.26-2.31 mg L-1, respectively. The average floodwater DRP concentrations of the Recent and Pallic soils were 35 and 43-fold higher than the target DRP concentration (0.01 mg L-1) for the Manawatū River. The study highlights the substantial risk of P loss from CSAs to surface water, driven primarily by the reductive dissolution of Fe and Mn oxy(hydr)oxides. The findings underscore the importance of targeted management strategies to mitigate dissolved P runoff, particularly in high-risk CSAs frequent submerged during rainfall events. This study developed an effective method for monitoring soil porewater P and redox conditions, offering valuable insights and practical tools for resource managers seeking to reduce P contamination.

Description

Citation

Palihakkara J, Burkitt L, Jeyakumar P, Attanayake CP. (2025). Redox-induced phosphorus release from critical source areas following rainfall events in New Zealand.. J Environ Manage. 374. February 2025. (pp. 124006-).

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as (c) The author/s