Locally energy-stable finite element schemes for incompressible flow problems: Design and analysis for equal-order interpolations

dc.citation.volume294
dc.contributor.authorHajduk H
dc.contributor.authorKuzmin D
dc.contributor.authorLube G
dc.contributor.authorÖffner P
dc.date.accessioned2025-05-01T01:52:20Z
dc.date.available2025-05-01T01:52:20Z
dc.date.issued2025-05-30
dc.description.abstractWe show that finite element discretizations of incompressible flow problems can be designed to ensure preservation/dissipation of kinetic energy not only globally but also locally. In the context of equal-order (piecewise-linear) interpolations, we prove the validity of a semi-discrete energy inequality for a quadrature-based approximation to the nonlinear convective term, which we combine with the Becker–Hansbo pressure stabilization. An analogy with entropy-stable algebraic flux correction schemes for the compressible Euler equations and the shallow water equations yields a weak ‘bounded variation’ estimate from which we deduce the semi-discrete Lax–Wendroff consistency and convergence towards dissipative weak solutions. The results of our numerical experiments for standard test problems confirm that the method under investigation is non-oscillatory and exhibits optimal convergence behavior.
dc.description.confidentialfalse
dc.identifier.citationHajduk H, Kuzmin D, Lube G, Öffner P. (2025). Locally energy-stable finite element schemes for incompressible flow problems: Design and analysis for equal-order interpolations. Computers and Fluids. 294.
dc.identifier.doi10.1016/j.compfluid.2025.106622
dc.identifier.eissn1879-0747
dc.identifier.elements-typejournal-article
dc.identifier.issn0045-7930
dc.identifier.number106622
dc.identifier.piiS0045793025000829
dc.identifier.urihttps://mro.massey.ac.nz/handle/10179/72832
dc.languageEnglish
dc.publisherElsevier Ltd
dc.publisher.urihttps://www.sciencedirect.com/science/article/pii/S0045793025000829
dc.relation.isPartOfComputers and Fluids
dc.rights(c) 2025 The Author/s
dc.rightsCC BY 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectIncompressible Euler and Navier–Stokes equations
dc.subjectStabilized finite element methods
dc.subjectEqual-order interpolation
dc.subjectEnergy inequality
dc.subjectConsistency
dc.subjectConvergence
dc.subjectDissipative weak solutions
dc.titleLocally energy-stable finite element schemes for incompressible flow problems: Design and analysis for equal-order interpolations
dc.typeJournal article
pubs.elements-id500516
pubs.organisational-groupOther

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
500516 PDF.pdf
Size:
4.23 MB
Format:
Adobe Portable Document Format
Description:
Published version.pdf

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
9.22 KB
Format:
Plain Text
Description:

Collections