Extremal mappings of finite distortion and the Radon–Riesz property

dc.citation.issue7
dc.citation.volume38
dc.contributor.authorMartin G
dc.contributor.authorYao C
dc.date.accessioned2024-07-28T23:51:33Z
dc.date.available2024-07-28T23:51:33Z
dc.date.issued2022-12-23
dc.description.abstractWe consider Sobolev mappings f ∈ W 1;q(Ω; C), 1 < q < ∞, between planar domains Ω ⊂ ℂ. We analyse the Radon–Riesz property for polyconvex functionals of the form (Formula presented) and show that under certain criteria, which hold in important cases, weak convergence in Wloc1;q.(Ω) of (for instance) a minimising sequence can be improved to strong convergence. This finds important applications in the minimisation problems for mappings of finite distortion and the Lp and Exp-Teichmüller theories.
dc.description.confidentialfalse
dc.format.pagination2057-2068
dc.identifier.citationMartin G, Yao C. (2022). Extremal mappings of finite distortion and the Radon–Riesz property. Revista Matematica Iberoamericana. 38. 7. (pp. 2057-2068).
dc.identifier.doi10.4171/RMI/1379
dc.identifier.eissn2235-0616
dc.identifier.elements-typejournal-article
dc.identifier.issn0213-2230
dc.identifier.urihttps://mro.massey.ac.nz/handle/10179/71127
dc.languageEnglish
dc.publisherEMS Press
dc.publisher.urihttps://ems.press/journals/rmi/articles/8736462
dc.relation.isPartOfRevista Matematica Iberoamericana
dc.rights© 2022 Real Sociedad Matemática Española
dc.rightsCC BY 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectQuasiconformal
dc.subjectfinite distortion
dc.subjectextremal mappings
dc.subjectcalculus of variation
dc.titleExtremal mappings of finite distortion and the Radon–Riesz property
dc.typeJournal article
pubs.elements-id460243
pubs.organisational-groupCollege of Health
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Published version.pdf
Size:
411.12 KB
Format:
Adobe Portable Document Format
Description:
460243 PDF.pdf
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
9.22 KB
Format:
Plain Text
Description:
Collections