Extremal mappings of finite distortion and the Radon–Riesz property
dc.citation.issue | 7 | |
dc.citation.volume | 38 | |
dc.contributor.author | Martin G | |
dc.contributor.author | Yao C | |
dc.date.accessioned | 2024-07-28T23:51:33Z | |
dc.date.available | 2024-07-28T23:51:33Z | |
dc.date.issued | 2022-12-23 | |
dc.description.abstract | We consider Sobolev mappings f ∈ W 1;q(Ω; C), 1 < q < ∞, between planar domains Ω ⊂ ℂ. We analyse the Radon–Riesz property for polyconvex functionals of the form (Formula presented) and show that under certain criteria, which hold in important cases, weak convergence in Wloc1;q.(Ω) of (for instance) a minimising sequence can be improved to strong convergence. This finds important applications in the minimisation problems for mappings of finite distortion and the Lp and Exp-Teichmüller theories. | |
dc.description.confidential | false | |
dc.format.pagination | 2057-2068 | |
dc.identifier.citation | Martin G, Yao C. (2022). Extremal mappings of finite distortion and the Radon–Riesz property. Revista Matematica Iberoamericana. 38. 7. (pp. 2057-2068). | |
dc.identifier.doi | 10.4171/RMI/1379 | |
dc.identifier.eissn | 2235-0616 | |
dc.identifier.elements-type | journal-article | |
dc.identifier.issn | 0213-2230 | |
dc.identifier.uri | https://mro.massey.ac.nz/handle/10179/71127 | |
dc.language | English | |
dc.publisher | EMS Press | |
dc.publisher.uri | https://ems.press/journals/rmi/articles/8736462 | |
dc.relation.isPartOf | Revista Matematica Iberoamericana | |
dc.rights | © 2022 Real Sociedad Matemática Española | |
dc.rights | CC BY 4.0 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Quasiconformal | |
dc.subject | finite distortion | |
dc.subject | extremal mappings | |
dc.subject | calculus of variation | |
dc.title | Extremal mappings of finite distortion and the Radon–Riesz property | |
dc.type | Journal article | |
pubs.elements-id | 460243 | |
pubs.organisational-group | College of Health |