Counting the spanning trees of the 3-cube using edge slides

dc.citation.issue2
dc.citation.volume54
dc.contributor.authorTuffley CP
dc.date.available2012-10
dc.date.issued2012-10
dc.description.abstractWe give a direct combinatorial proof of the known fact that the 3-cube has 384 spanning trees, using an "edge slide" operation on spanning trees. This gives an answer in the case n=3 to a question implicitly raised by Stanley. Our argument gives a bijective proof of the n=3 case of a weighted count of the spanning trees of the n-cube due to Martin and Reiner.
dc.description.confidentialFALSE
dc.description.publication-statusPublished
dc.format.extent189 - 206 (18)
dc.identifierhttp://ajc.maths.uq.edu.au/pdf/54/ajc_v54_p189.pdf
dc.identifier.citationAustralasian Journal of Combinatorics, 2012, 54 (2), pp. 189 - 206 (18)
dc.identifier.elements-id141752
dc.identifier.harvestedMassey_Dark
dc.identifier.issn1034-4942
dc.identifier.urihttps://hdl.handle.net/10179/12159
dc.publisher.urihttp://ajc.maths.uq.edu.au/pdf/54/ajc_v54_p189.pdf
dc.relation.isPartOfAustralasian Journal of Combinatorics
dc.relation.urihttp://ajc.maths.uq.edu.au/pdf/54/ajc_v54_p189.pdf
dc.subject.anzsrc0101 Pure Mathematics
dc.subject.anzsrc0103 Numerical and Computational Mathematics
dc.subject.anzsrc0802 Computation Theory and Mathematics
dc.titleCounting the spanning trees of the 3-cube using edge slides
dc.typeJournal article
pubs.notesNot known
pubs.organisational-group/Massey University
pubs.organisational-group/Massey University/College of Sciences
Files
Collections