Counting the spanning trees of the 3-cube using edge slides
dc.citation.issue | 2 | |
dc.citation.volume | 54 | |
dc.contributor.author | Tuffley CP | |
dc.date.available | 2012-10 | |
dc.date.issued | 2012-10 | |
dc.description.abstract | We give a direct combinatorial proof of the known fact that the 3-cube has 384 spanning trees, using an "edge slide" operation on spanning trees. This gives an answer in the case n=3 to a question implicitly raised by Stanley. Our argument gives a bijective proof of the n=3 case of a weighted count of the spanning trees of the n-cube due to Martin and Reiner. | |
dc.description.confidential | FALSE | |
dc.description.publication-status | Published | |
dc.format.extent | 189 - 206 (18) | |
dc.identifier | http://ajc.maths.uq.edu.au/pdf/54/ajc_v54_p189.pdf | |
dc.identifier.citation | Australasian Journal of Combinatorics, 2012, 54 (2), pp. 189 - 206 (18) | |
dc.identifier.elements-id | 141752 | |
dc.identifier.harvested | Massey_Dark | |
dc.identifier.issn | 1034-4942 | |
dc.identifier.uri | https://hdl.handle.net/10179/12159 | |
dc.publisher.uri | http://ajc.maths.uq.edu.au/pdf/54/ajc_v54_p189.pdf | |
dc.relation.isPartOf | Australasian Journal of Combinatorics | |
dc.relation.uri | http://ajc.maths.uq.edu.au/pdf/54/ajc_v54_p189.pdf | |
dc.subject.anzsrc | 0101 Pure Mathematics | |
dc.subject.anzsrc | 0103 Numerical and Computational Mathematics | |
dc.subject.anzsrc | 0802 Computation Theory and Mathematics | |
dc.title | Counting the spanning trees of the 3-cube using edge slides | |
dc.type | Journal article | |
pubs.notes | Not known | |
pubs.organisational-group | /Massey University | |
pubs.organisational-group | /Massey University/College of Sciences |