Structure-guided inhibition of the cancer DNA-mutating enzyme APOBEC3A
dc.citation.volume | 14 | |
dc.contributor.author | Harjes S | |
dc.contributor.author | Kurup HM | |
dc.contributor.author | Rieffer AE | |
dc.contributor.author | Bayarjargal M | |
dc.contributor.author | Filichetva J | |
dc.contributor.author | Su Y | |
dc.contributor.author | Hale TK | |
dc.contributor.author | Filichev VV | |
dc.contributor.author | Harjes E | |
dc.contributor.author | Harris RS | |
dc.contributor.author | Jameson GB | |
dc.date.accessioned | 2024-10-02T19:51:34Z | |
dc.date.available | 2024-10-02T19:51:34Z | |
dc.date.issued | 2023-10-11 | |
dc.description.abstract | The normally antiviral enzyme APOBEC3A 1-4 is an endogenous mutagen in many different human cancers 5-7 , where it becomes hijacked to fuel tumor evolvability. APOBEC3A’s single-stranded DNA C-to-U editing activity 1-8 results in multiple mutagenic outcomes including signature single-base substitution mutations (isolated and clustered), DNA breakage, and larger-scale chromosomal aberrations 5-7 . Transgenic expression in mice demonstrates its tumorigenic potential. APOBEC3A inhibitors may therefore comprise a novel class of anti-cancer agents that work by blocking mutagenesis, preventing tumor evolvability, and lessening detrimental outcomes such as drug resistance and metastasis. Here we reveal the structural basis of competitive inhibition of wildtype APOBEC3A by hairpin DNA bearing 2’-deoxy-5-fluorozebularine in place of the cytidine in the TC recognition motif that is part of a three-nucleotide loop. The nuclease-resistant phosphorothioated derivatives of these inhibitors maintain nanomolar in vitro potency against APOBEC3A, localize to the cell nucleus, and block APOBEC3A activity in human cells. These results combine to suggest roles for these inhibitors to study A3A activity in living cells, potentially as conjuvants, leading toward next-generation, combinatorial anti-mutator and anti-cancer therapies. | |
dc.description.confidential | false | |
dc.edition.edition | 2023 | |
dc.identifier.citation | Jameson G, Harjes S, Kurup H, Rieffer A, Bayarjargal M, Filichetva J, Su Y, Hale T, Filichev V, Harjes E, Harris R. (2023). Structure-guided inhibition of the cancer DNA-mutating enzyme APOBEC3A. Nature Communications. 14. | |
dc.identifier.doi | 10.21203/rs.3.rs-2598101/v1 | |
dc.identifier.eissn | 2041-1723 | |
dc.identifier.elements-type | journal-article | |
dc.identifier.number | 6382 | |
dc.identifier.uri | https://mro.massey.ac.nz/handle/10179/71573 | |
dc.language | English | |
dc.publisher | Springer Nature Limited | |
dc.publisher.uri | https://www.nature.com/articles/s41467-023-42174-w | |
dc.relation.isPartOf | Nature Communications | |
dc.rights | (c) 2023 The Author/s | |
dc.rights | CC BY 4.0 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Cancer | |
dc.subject | DNA | |
dc.subject | Enzyme mechanisms | |
dc.subject | X-Ray crystallography | |
dc.title | Structure-guided inhibition of the cancer DNA-mutating enzyme APOBEC3A | |
dc.type | Journal article | |
pubs.elements-id | 461377 | |
pubs.organisational-group | Other |
Files
Original bundle
1 - 4 of 4
Loading...
- Name:
- Published version.pdf
- Size:
- 3.18 MB
- Format:
- Adobe Portable Document Format
- Description:
- 461377 PDF.pdf
Loading...
- Name:
- Evidence 2.pdf
- Size:
- 279.06 KB
- Format:
- Adobe Portable Document Format
- Description:
- 41467_2023_42174_MOESM3_ESM.pdf
Loading...
- Name:
- Evidence 1.pdf
- Size:
- 495.1 KB
- Format:
- Adobe Portable Document Format
- Description:
- 41467_2023_42174_MOESM2_ESM.pdf
Loading...
- Name:
- Evidence 3.pdf
- Size:
- 3.46 MB
- Format:
- Adobe Portable Document Format
- Description:
- 41467_2023_42174_MOESM1_ESM.pdf
License bundle
1 - 1 of 1