Characterization of Al-12Si Thin-Wall Properties Fabricated with Laser Direct Energy Deposition

dc.citation.issue17
dc.citation.volume15
dc.contributor.authorRumman R
dc.contributor.authorManjaiah M
dc.contributor.authorTouzé S
dc.contributor.authorSims RA
dc.contributor.authorHascoët J-Y
dc.contributor.authorQuinton JS
dc.contributor.editorNarayanan JA
dc.contributor.editorKaji F
dc.contributor.editorPathak S
dc.date.accessioned2024-08-08T21:23:50Z
dc.date.available2024-08-08T21:23:50Z
dc.date.issued2023-08-24
dc.description.abstractAdditive manufacturing is an emerging process that is used to manufacture industrial parts layer by layer and can produce a wide range of geometries for various applications. AM parts are adopted for aerospace, automobiles, antennas, gyroscopes, and waveguides in electronics. However, there are several challenges existing in manufacturing Al components using the AM process, and their mechanical and microstructural properties are not yet fully validated. In the present study, a gas-atomised powder of a eutectic Al-12Si alloy was used as feedstock for the Laser Direct Energy Deposition (LDED) process. A SEM analysis of Al-12Si powder used for processing illustrated that particles possess appropriate morphology for LDED. A numerical control system was used to actuate the deposition head towards printing positions. The deposited samples revealed the presence of Al-rich and Al-Si eutectic regions. The porosity content in the samples was found to be around 2.6%. Surface profile roughness measurements and a microstructural analysis of the samples were also performed to assess the fabricated sample in terms of the roughness, porosity, and distribution of Al and Al/Si eutectic phases. The tensile properties of fabricated thin walls were better compared to casted Al alloys due to the uniform distribution of Si in each layer. Micro-hardness tests on the deposited samples showed a hardness of 95 HV, which is equivalent to casted and powder bed fusion melting samples. The gas atomised Al-12Si powders are highly reflective to a laser and also quick oxidation takes place, which causes defects, porosity, and the balling effect during fabrication. The results can be used as a base guide for the further fabrication of aerospace component design with high structural integrity.
dc.description.confidentialfalse
dc.edition.editionSeptember-1 2023
dc.identifier.citationRumman R, Manjaiah M, Touzé S, Sims RA, Hascoët JY, Quinton JS. (2023). Characterization of Al-12Si Thin-Wall Properties Fabricated with Laser Direct Energy Deposition. Sustainability (Switzerland). 15. 17.
dc.identifier.doi10.3390/su151712806
dc.identifier.eissn2071-1050
dc.identifier.elements-typejournal-article
dc.identifier.number12806
dc.identifier.urihttps://mro.massey.ac.nz/handle/10179/71238
dc.languageEnglish
dc.publisherMDPI (Basel, Switzerland)
dc.publisher.urihttps://www.mdpi.com/2071-1050/15/17/12806
dc.relation.isPartOfSustainability (Switzerland)
dc.rights(c) 2023 The Author/s
dc.rightsCC BY 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectadditive manufacturing
dc.subjectAl-Si eutectic alloys
dc.subjecthardness
dc.subjectLaser Direct Energy Deposition (LDED)
dc.subjectmicrostructure
dc.subjectsurface profile roughness
dc.titleCharacterization of Al-12Si Thin-Wall Properties Fabricated with Laser Direct Energy Deposition
dc.typeJournal article
pubs.elements-id480626
pubs.organisational-groupCollege of Health
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Published version.pdf
Size:
9.69 MB
Format:
Adobe Portable Document Format
Description:
480626 PDF.pdf
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
9.22 KB
Format:
Plain Text
Description:
Collections