Pattern Formation in a Spatially Extended Model of Pacemaker Dynamics in Smooth Muscle Cells.

dc.citation.issue8
dc.citation.volume84
dc.contributor.authorFatoyinbo HO
dc.contributor.authorBrown RG
dc.contributor.authorSimpson DJW
dc.contributor.authorvan Brunt B
dc.coverage.spatialUnited States
dc.date.accessioned2023-01-04T01:35:45Z
dc.date.accessioned2023-11-20T01:38:00Z
dc.date.available2022-07-08
dc.date.available2022-06-16
dc.date.available2023-01-04T01:35:45Z
dc.date.available2023-11-20T01:38:00Z
dc.date.issued2022-07-08
dc.description.abstractSpatiotemporal patterns are common in biological systems. For electrically coupled cells, previous studies of pattern formation have mainly used applied current as the primary bifurcation parameter. The purpose of this paper is to show that applied current is not needed to generate spatiotemporal patterns for smooth muscle cells. The patterns can be generated solely by external mechanical stimulation (transmural pressure). To do this we study a reaction-diffusion system involving the Morris-Lecar equations and observe a wide range of spatiotemporal patterns for different values of the model parameters. Some aspects of these patterns are explained via a bifurcation analysis of the system without coupling - in particular Type I and Type II excitability both occur. We show the patterns are not due to a Turing instability and that the spatially extended model exhibits spatiotemporal chaos. We also use travelling wave coordinates to analyse travelling waves.
dc.description.publication-statusPublished online
dc.format.extent86 - ?
dc.identifierhttps://www.ncbi.nlm.nih.gov/pubmed/35804271
dc.identifier10.1007/s11538-022-01043-1
dc.identifier.citationBull Math Biol, 2022, 84 (8), pp. 86 - ?
dc.identifier.doi10.1007/s11538-022-01043-1
dc.identifier.eissn1522-9602
dc.identifier.elements-id454588
dc.identifier.harvestedMassey_Dark
dc.identifier.urihttps://hdl.handle.net/10179/17936
dc.languageeng
dc.publisherSpringer Nature Switzerland AG on behalf of the Society for Mathematical Biology
dc.relation.isPartOfBull Math Biol
dc.relation.urihttps://link.springer.com/article/10.1007/s11538-022-01043-1
dc.rights(c) The Author/s
dc.subjectBifurcation analysis
dc.subjectMorris–Lecar
dc.subjectNon-Turing patterns
dc.subjectPacemaker dynamics
dc.subjectPattern formation
dc.subjectSmooth muscle cells
dc.subjectSpatiotemporal chaos
dc.subjectTravelling waves
dc.subjectDiffusion
dc.subjectMathematical Concepts
dc.subjectModels, Biological
dc.subjectMyocytes, Smooth Muscle
dc.subjectPacemaker, Artificial
dc.subject.anzsrc01 Mathematical Sciences
dc.subject.anzsrc06 Biological Sciences
dc.titlePattern Formation in a Spatially Extended Model of Pacemaker Dynamics in Smooth Muscle Cells.
dc.typeJournal article
massey.relation.uri-descriptionPublished version
pubs.notesNot known
pubs.organisational-group/Massey University
pubs.organisational-group/Massey University/College of Sciences
pubs.organisational-group/Massey University/College of Sciences/School of Mathematical and Computational Sciences
pubs.organisational-group/Massey University/College of Sciences/School of Veterinary Science
Files
Collections