General relations between sums of squares and sums of triangular numbers
dc.contributor.author | Chandrashekar, Adiga | |
dc.contributor.author | Cooper, Shaun | |
dc.contributor.author | Han, Jung Hun | |
dc.date.accessioned | 2013-05-14T02:23:15Z | |
dc.date.available | 2013-05-14T02:23:15Z | |
dc.date.issued | 2004 | |
dc.description.abstract | Let = ( 1, · · · , m) be a partition of k. Let r (n) denote the number of solutions in integers of 1x21 + · · · + mx2 m = n, and let t (n) denote the number of solutions in non negative integers of 1x1(x1 +1)/2+· · ·+ mxm(xm +1)/2 = n. We prove that if 1 k 7, then there is a constant c , depending only on , such that r (8n + k) = c t (n), for all integers n. | en |
dc.identifier.citation | Chandrashekar, A., Cooper, S., Han, J.H. (2004), General relations between sums of squares and sums of triangular numbers, Research Letters in the Information and Mathematical Sciences, 6, 157-161 | en |
dc.identifier.issn | 1175-2777 | |
dc.identifier.uri | http://hdl.handle.net/10179/4428 | |
dc.language.iso | en | en |
dc.publisher | Massey University | en |
dc.subject | Integers | en |
dc.title | General relations between sums of squares and sums of triangular numbers | en |
dc.type | Article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- General_relations_between_sums_of_squares_and_sums_of_triangular_numbers.pdf
- Size:
- 131.78 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: