MOTL: enhancing multi-omics matrix factorization with transfer learning

dc.citation.issue1
dc.citation.volume26
dc.contributor.authorHirst DP
dc.contributor.authorTérézol M
dc.contributor.authorCantini L
dc.contributor.authorVilloutreix P
dc.contributor.authorVignes M
dc.contributor.authorBaudot A
dc.contributor.editorCosgrove A
dc.date.accessioned2025-08-18T21:53:58Z
dc.date.available2025-08-18T21:53:58Z
dc.date.issued2025-12-01
dc.description.abstractJoint matrix factorization is popular for extracting lower dimensional representations of multi-omics data but loses effectiveness with limited samples. Addressing this limitation, we introduce MOTL (Multi-Omics Transfer Learning), a framework that enhances MOFA (Multi-Omics Factor Analysis) by inferring latent factors for small multi-omics target datasets with respect to those inferred from a large heterogeneous learning dataset. We evaluate MOTL by designing simulated and real data protocols and demonstrate that MOTL improves the factorization of limited-sample multi-omics datasets when compared to factorization without transfer learning. When applied to actual glioblastoma samples, MOTL enhances delineation of cancer status and subtype.
dc.description.confidentialfalse
dc.edition.editionDecember 2025
dc.identifier.citationHirst DP, Térézol M, Cantini L, Villoutreix P, Vignes M, Baudot A. (2025). MOTL: enhancing multi-omics matrix factorization with transfer learning. Genome Biology. 26. 1.
dc.identifier.doi10.1186/s13059-025-03675-7
dc.identifier.eissn1474-760X
dc.identifier.elements-typejournal-article
dc.identifier.issn1474-7596
dc.identifier.number224
dc.identifier.piis13059-025-03675-7
dc.identifier.urihttps://mro.massey.ac.nz/handle/10179/73382
dc.languageEnglish
dc.publisherBioMed Central Ltd
dc.publisher.urihttps://genomebiology.biomedcentral.com/articles/10.1186/s13059-025-03675-7
dc.relation.isPartOfGenome Biology
dc.rights(c) 2025 The Author/s
dc.rightsCC BY-NC-ND 4.0
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMatrix factorization
dc.subjectDimensionality reduction
dc.subjectMulti-omics
dc.subjectData integration
dc.subjectTransfer learning
dc.subjectMOFA
dc.titleMOTL: enhancing multi-omics matrix factorization with transfer learning
dc.typeJournal article
pubs.elements-id502674
pubs.organisational-groupOther

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
502764 PDF.pdf
Size:
4.11 MB
Format:
Adobe Portable Document Format
Description:
Published version.pdf

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
9.22 KB
Format:
Plain Text
Description:

Collections