Gregory-Newton problem for kissing sticky spheres

dc.citation.issue3
dc.citation.volume98
dc.contributor.authorTrombach L
dc.contributor.authorSchwerdtfeger P
dc.date.accessioned2023-12-03T19:08:49Z
dc.date.accessioned2024-07-25T06:39:17Z
dc.date.available2018-09-28
dc.date.available2023-12-03T19:08:49Z
dc.date.available2024-07-25T06:39:17Z
dc.date.issued2018-09-28
dc.description.abstractAll possible nonisomorphic arrangements of 12 spheres kissing a central sphere (the Gregory-Newton problem) are obtained for the sticky-hard-sphere (SHS) model and subsequently projected by geometry optimization onto a set of structures derived from an attractive Lennard-Jones (LJ) type of potential. It is shown that all 737 derived SHS contact graphs corresponding to the 12 outer spheres are (edge-induced) subgraphs of the icosahedral graph. The most widely used LJ(6,12) potential has only one minimum structure corresponding to the ideal icosahedron where the 12 outer spheres do not touch each other. The point of symmetry breaking away from the icosahedral symmetry towards the SHS limit is obtained for general LJ(a,b) potentials with exponents a,b R+. Only if the potential becomes very repulsive in the short range, determined by the LJ hard-sphere radius σ, are symmetry-broken solutions observed.
dc.description.confidentialfalse
dc.edition.editionSeptember 2018
dc.identifier.author-urlhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000446281900016&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=c5bb3b2499afac691c2e3c1a83ef6fef
dc.identifier.citationTrombach L, Schwerdtfeger P. (2018). Gregory-Newton problem for kissing sticky spheres. Physical Review E. 98. 3.
dc.identifier.doi10.1103/PhysRevE.98.033311
dc.identifier.eissn2470-0053
dc.identifier.elements-typejournal-article
dc.identifier.issn2470-0045
dc.identifier.numberARTN 033311
dc.identifier.urihttps://mro.massey.ac.nz/handle/10179/70623
dc.languageEnglish
dc.publisherAmerican Physical Society
dc.publisher.urihttps://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.033311
dc.relation.isPartOfPhysical Review E
dc.rightsThe publishers The author/sen
dc.titleGregory-Newton problem for kissing sticky spheres
dc.typeJournal article
pubs.elements-id416570
pubs.organisational-groupOther
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Published
Size:
1.38 MB
Format:
Adobe Portable Document Format
Description:
Collections