Modelling sulphate dynamics in soils : the effect of ion-pair adsorption : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey University

dc.contributor.authorCichota, Rogerio
dc.date.accessioned2010-07-13T01:41:06Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2010-07-13T01:41:06Z
dc.date.issued2007
dc.description.abstractSulphur is an important nutrient to plants, and reports of its deficiency have been increasing worldwide. Sulphur starvation causes losses in both yield and quality, and it reduces nitrogen use efficiency of plants. As the timing for fertilisation can be decisive for avoiding deleterious effects, improvements in the description of the sulphur balance in fields are a valuable contribution for assisting fertiliser management. Sulphate is the most important inorganic form of sulphur in soils. Being the mobile form, sulphate is readily available for plants, and also prone to be leached. Therefore the description of the movement of sulphate is the key component of the sulphur balance. Leaching of sulphate from the soil can be significantly delayed by its adsorption onto the soil particles. Soil type and pH are the main factors defining the sulphate adsorption capacity; although the presence of other ions in the soil solution can have a considerable effect. It has been reported that in some soils, typically volcanic and tropical soils with variable-charge characteristics, the co-presence of sulphate and calcium can substantially enhance their retention via ion-pair adsorption (IPA). To determine the influence of cations on the movement of sulphate, series of batch and miscible displacement experiments were conducted using two New Zealand soils, of contrasting ion adsorption capacities: the Taupo sandy and Egmont loam soils. These experiments demonstrated the occurrence of cooperative adsorption of sulphate and calcium in the Egmont soil, but not in the Taupo soil. Batch experiments were conducted to examine the IPA adsorption process in the Egmont soil in more detail. Based on the analyses of the results from these two series of experiments, plus the review of published data, three different mathematical approaches for evaluating the amount of solute adsorbed as ion-pairs are proposed. A computer program was built for solving an adsorption model using these three approaches, and was used to compare the model's predictions and the observed adsorption data. An extension of this program, coupling the adsorption model with a solute transport description, was used to simulate the movement of sulphate and calcium. Comparisons between the data from the miscible displacements and the results from this model are used to demonstrate the applicability of the proposed IPA description for modelling the transport of these ions in the soil. Finally, results from a pot trial with Egmont soil are used to examine the relevance of IPA for the movement of sulphate under non-equilibrium conditions, and with active plant growth. Although the results from this experiment regarding IPA were statistically non-significant, some insights could be obtained and are discussed. More studies involving IPA under non-equilibrium experiments are needed for a better understanding of the relevance of IPA in field conditions.en_US
dc.identifier.urihttp://hdl.handle.net/10179/1443
dc.language.isoenen_US
dc.publisherMassey Universityen_US
dc.rightsThe Authoren_US
dc.subjectSulpher in soilen_US
dc.subjectLeachingen_US
dc.subjectSulphur fertilisersen_US
dc.subjectCalciumen_US
dc.subjectIon-pair adsorptionen_US
dc.subject.otherFields of Research::300000 Agricultural, Veterinary and Environmental Sciences::300100 Soil and Water Sciences::300103 Soil chemistryen_US
dc.titleModelling sulphate dynamics in soils : the effect of ion-pair adsorption : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey Universityen_US
dc.typeThesisen_US
massey.contributor.authorCichota, Rogerio
thesis.degree.disciplineSoil Scienceen_US
thesis.degree.grantorMassey Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophy (Ph.D.)en_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
02_whole.pdf
Size:
6.73 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
01_front.pdf
Size:
1.14 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
896 B
Format:
Item-specific license agreed upon to submission
Description: