Manipulating soil bioavailable copper as an innovative nitrate leaching mitigating strategy in New Zealand pastoral soils : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Soil Science, School of Agriculture and Environment, College of Sciences, Massey University, Palmerston North, New Zealand

Loading...
Thumbnail Image
Date
2023
DOI
Open Access Location
Journal Title
Journal ISSN
Volume Title
Publisher
Massey University
Rights
The Author
Abstract
Urine patches are the primary sources of nitrate (NO₃⁻ -N) leaching from pastoral dairy farms. Since NO₃⁻ -N is the product of nitrification, a clear understanding of the nitrification process is a vital step toward the development of effective and efficient mitigation approaches. The first step of ammonia (NH₄⁺) oxidation to hydroxylamine (NH₂OH) is catalyzed by the ammonia monooxygenase enzyme (AMO), and copper (Cu) is a co-factor in the activity of the AMO enzyme. Therefore, manipulating Cu bioavailability through the application of Cu-complexing organic compounds such as calcium lignosulphonate (LS) and co-poly acrylic-maleic acid (PA-MA) to soil could influence AMO activity and consequently limit the nitrification rate in soil. There are no published studies that have examined the effect of bioavailable Cu concentration changes on nitrification rate, ammonia-oxidizing bacteria (AOB) and archaea (AOA), and NO₃⁻ -N leaching. The overall aim of this thesis is to determine the significance of bioavailable Cu in the nitrification process in the context of developing novel Cu-complexing organic compounds to inhibit nitrification rate in pastoral soils. A soil incubation study was conducted to characterize the relationship between changes in soil bioavailable Cu concentration and nitrification rate. This study was conducted using three pastoral soils (Pumice, Pallic, and Recent soils) spiked with five Cu levels (0.1, 0.3, 0.5, 1, and 3 mg kg⁻¹). Treatments of Cu-complexing compounds were separately applied to each Cu level. The treatments were urea applied at 300 mg N kg⁻¹, urea + LS at 120 mg kg⁻¹, and urea + PA-MA at 10 mg kg⁻¹. Results show that increasing the added Cu concentration from 0.1 to 3 mg kg⁻¹ increased nitrification rate by 35, 22, and 33% in the Pumice, Pallic, and Recent soils, respectively. Application of LS and PA-MA significantly (P ˂ 0.05) decreased nitrification rate with the mean reduction being 59 and 56%, 32 and 26%, and 39 and 38% in the Pumice, Pallic, and Recent soils, respectively at Day 8 relative to the urea-only treatment. To further extend knowledge of the relationship between bioavailable Cu and the key nitrifying microorganisms in soils, a greenhouse-based pot trial using three soils (Pumice, Pallic, and Recent soils) planted with ryegrass and treated with synthetic urine applied at 300 kg N ha⁻¹ and three levels of Cu (0, 1, 10, 100 mg added Cu kg⁻¹) was established. Results show that AOB amoA gene abundance increased as a function of increasing added Cu from 1 to 10 mg kg⁻¹ but was inhibited at 100 mg added Cu kg⁻¹ in both Pallic and Recent soils. The effect of bioavailable Cu was not apparent in the Pumice soil. The increase in AOB amoA gene abundance positively correlated with nitrification rate in both the Pallic (r = 0.982, P < 0.01) and Recent soil (r = 0.943, P < 0.01) but not in the Pumice soil. There was no effect of increasing Cu concentration on AOA amoA gene abundance in all three soils. Results from both incubation and greenhouse pot trials provide strong evidence that Cu is an important trace element in the nitrification process and reducing Cu can reduce nitrification in soil. However, in order to definitively quantify this treatment effect, further field studies were necessary. Therefore, a field lysimeter study was conducted using Pumice soil (Manawatu climate) and Pallic soil (Canterbury climate). The following treatments were investigated to reduce NO₃⁻ -N leaching during late-autumn application; urine only at 600 kg N ha⁻¹, urine + PA-MA at 10 kg ha⁻¹, urine + LS at 120 kg ha⁻¹, urine + a split-application of calcium lignosulphonate (2LS at same rate, initial and after a month of first application), and urine + ProGibb SG (GA at 80 g ha⁻¹) + LS (GA + LS). Another set of treatment applications, urine only, urine + GA only, and urine + GA + LS, were applied mid-winter to both soils. The GA was applied to improve the effectiveness of these organic compounds during climatic periods of poor plant growth. Results showed that there was no significant reduction in mineral N leaching associated with the late-autumn application of both PA-MA and LS for the Pumice or Pallic soils. However, the application of 2LS reduced mineral N leaching by 16 and 11% in Pumice and Pallic soils, respectively, relative to urine-only. The late-autumn inclusion of GA increased the effectiveness of LS in both soils. This was confirmed by a significant reduction of mineral N leaching by 35% from both Pumice and Pallic soils. Mid-winter application of GA + LS significantly reduced mineral N leaching only in the Pumice soil (by 20%) but not in the Pallic soil relative to urine-only. In both late-autumn and mid-winter treatments application of the different Cu-complexing treatments did not have negative effects on pasture dry matter yield in either Pumice or Pallic soils. In this lysimeter study, the mechanistic effect of PA-MA and LS on reducing bioavailable, nitrification rate and AOB/AOA amoA gene abundance was not investigated. A second field lysimeter experiment was established using the Recent soil in Manawatu to explore the mechanism of Cu manipulation through the application of LS and PA-MA on nitrification rate, AOB/AOA amoA gene abundance, and mineral N leaching. The effect of combining organic inhibitors with GA on reducing mineral N leaching was also investigated. This study evaluated the same treatments used in the first lysimeter study and applications were again conducted at two different seasonal periods (late-autumn and mid-winter). The results showed that the effect of PA-MA and 2LS on bioavailable Cu corresponded with a reduction in nitrification rate and AOB amoA gene abundance. The effect of PA-MA and 2LS was associated with reduced mineral N leaching by values of 16 and 30%, respectively, relative to urine-only. The reduction in mineral N leaching induced by PA-MA and 2LS increased N uptake by 25 and 7.8% and herbage DM yield by factors of 11 and 8%, respectively, relative to the urine-only. The LS treatment did not induce a significant change of either bioavailable Cu or nitrification rate which corresponded to no significant effect on mineral N leaching. The late-autumn combination of GA + LS reduced mineral N leaching by 19% relative to urine-only, but there was no significant difference in mineral N leaching observed for the mid-winter application relative to urine-only. The overall results of this research show that bioavailable Cu is a vital trace element in the nitrification process and for AOB functioning in soil. Therefore, reduction in bioavailable Cu through the application of Cu-complexing compounds can inhibit nitrification. In this doctoral study, the application of Cu-complexing compounds (LS and PA-MA) showed potential to inhibit nitrification rate and subsequently reduce mineral N leaching in pastoral systems, but their efficacy depends on soil characteristics. Future work is recommended to investigate the effect of LS and PA-MA application on nitrous oxide emissions. Further research is recommended to investigate the short and long terms effects of these treatments on non-target soil microbiota.
Description
Keywords
Copper, Bioavailability, New Zealand, Soils, Nitrate content, Leaching, Dairy farming, Environmental aspects
Citation