Asymmetric catalysis via spatially separated chiral and catalytic motifs in multicomponent metal-organic frameworks : a thesis presented in partial fulfilment of the requirements of the degree of Doctor of Philosophy in Chemistry at Massey University, Manawatū, New Zealand

Loading...
Thumbnail Image

Date

2025-11-18

DOI

Open Access Location

Journal Title

Journal ISSN

Volume Title

Publisher

Massey University

Rights

© The Author

Abstract

Modern life without catalysis is inconceivable. Asymmetric catalysts are a special type of catalyst that preferentially produce one of two possible enantiomers over the other. The ability to selectively obtain exclusively one of the possible enantiomers is of highest importance for modern synthetic chemistry. To enable the transfer of chiral information from the catalyst to the reaction substrates, asymmetric catalysts must be chiral. In conventional asymmetric catalysts, the catalytic and chiral motifs are held close together within one single molecule. In this work, we break the design limitation of conventional asymmetric catalysts with a strategy we call ‘remote asymmetric induction’ (RAI). In RAI catalysts, the catalytic and chiral motifs are independent of each other in their design and synthesis. To achieve this, we use the multicomponent metal-organic framework MUF-77 (MUF = Massey University Framework). MUF-77 consists of three chemically distinct linkers that each occupy a specific position in the framework without disorder or randomness. To create RAI catalysts, the catalytic and chiral motifs are individually anchored to the different building blocks of MUF-77. By virtue of the MUF-77 structure, the catalytic and chiral motifs are in close proximity to one another in a catalytic pore, which creates an active site. This enables the transfer of chiral information to the reaction participants. Initially the reaction scope of the RAI catalyst was expanded by screening a variety of RAI-MOFs incorporating different catalytic and chiral functionalities across a range of model reactions. A promising catalyst for one model reaction was identified and investigated in depth. Through systematic modification of important reaction variables, the variation in enantioselectivity of this system was explored. After parameter optimisation, very good to excellent enantioselectivity was achieved. Control experiments confirmed that the origin of enantioselectivity arises from remote cooperative interactions between the functionalities in the active site. The catalysts were then tested for classical performance metrics and a hypothetical transition state within the MOF pore was proposed. This work establishes RAI as an alternative platform to develop high-performing asymmetric catalysts.

Description

Keywords

Catalysts, Synthesis, Enantioselective catalysis, Metal-organic frameworks

Citation

Endorsement

Review

Supplemented By

Referenced By