Investigating the role of HDAC4 subcellular distribution in Drosophila development and memory : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Biochemistry at Massey University, Manawatū, New Zealand

dc.contributor.authorMain, Patrick James
dc.date.accessioned2020-09-02T01:44:57Z
dc.date.available2020-09-02T01:44:57Z
dc.date.issued2019
dc.descriptionFigures are re-used with the publishers' permission.en_US
dc.description.abstractThe class IIa histone deacetylase HDAC4 has been previously demonstrated to play an essential role in brain development, learning and memory. However, the molecular pathways through which it acts are unknown. HDAC4 undergoes activity-dependent nucleocytoplasmic shuttling, disruption of the balance of nuclear and cytoplasmic HDAC4 has been identified as a factor in developmental and neurodegenerative disorders. This project used Drosophila melanogaster as a model to investigate the effects of altered subcellular distribution of HDAC4 on neural development and memory formation through the overexpression of Drosophila HDAC4 and wild-type human HDAC4 (hHDAC4), as well as nuclear- and cytoplasm-localising mutants of hHDAC4 named 3SA and L175A, respectively. The nuclear or cytoplasmic abundance of HDAC4 was adjusted by expressing the mutants during development or in adult flies. It was established that increased nuclear abundance of hHDAC4 in the brain impaired long-term memory and development, whereas increasing the cytoplasmic abundance did not. Further investigation showed that, contrary to vertebrate models, HDAC4 does not appear to repress memory in Drosophila through inactivation of MEF2 or CREB. Investigation of the transcriptomic changes induced by nuclear and cytoplasmic HDAC4 via RNASeq on RNA isolated from fly heads showed that L175A unexpectedly up-regulates the expression of genes in transcription and DNA synthesis. The relatively low number of transcriptional changes induced by 3SA suggested that it may be acting through largely transcriptionally independent means to impair memory and development in Drosophila. The localisation of HDAC4 to punctate foci in nuclei, potentially forming protein aggregates similar to Marinesco bodies seen in Parkinson’s Disease warrants further investigation. This project has shown that nuclear but not cytoplasmic HDAC4 impairs development and memory in Drosophila. Furthermore, cytoplasmic HDAC4 may play a role in transcriptional regulation of neurons, possibly regulation metabolic activity, suggesting that the activity-dependent nucleocytoplasmic shuttling of HDAC4 may not be primarily to remove HDAC4 from the nucleus and but instead to return HDAC4 to the cytoplasm.en_US
dc.identifier.urihttp://hdl.handle.net/10179/15578
dc.language.isoenen_US
dc.publisherMassey Universityen_US
dc.rightsThe Authoren_US
dc.subjectDrosophila melanogasteren_US
dc.subjectDevelopmenten_US
dc.subjectHistone deacetylaseen_US
dc.subjectLong-term memoryen_US
dc.subjectNervous systemen_US
dc.subjectDegenerationen_US
dc.subjectGenetic aspectsen_US
dc.subject.anzsrc310104 Cell neurochemistryen
dc.titleInvestigating the role of HDAC4 subcellular distribution in Drosophila development and memory : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Biochemistry at Massey University, Manawatū, New Zealanden_US
dc.typeThesisen_US
massey.contributor.authorMain, Patrick
thesis.degree.disciplineBiochemistryen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophy (PhD)en_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MainPhDThesis.pdf
Size:
8.99 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
3.32 KB
Format:
Item-specific license agreed upon to submission
Description: