Learning emergent partial differential equations in a learned emergent space

Loading...
Thumbnail Image

Date

2022-06-09

DOI

Open Access Location

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Nature Limited

Rights

(c) 2022 The Author/s
CC BY 4.0

Abstract

We propose an approach to learn effective evolution equations for large systems of interacting agents. This is demonstrated on two examples, a well-studied system of coupled normal form oscillators and a biologically motivated example of coupled Hodgkin-Huxley-like neurons. For such types of systems there is no obvious space coordinate in which to learn effective evolution laws in the form of partial differential equations. In our approach, we accomplish this by learning embedding coordinates from the time series data of the system using manifold learning as a first step. In these emergent coordinates, we then show how one can learn effective partial differential equations, using neural networks, that do not only reproduce the dynamics of the oscillator ensemble, but also capture the collective bifurcations when system parameters vary. The proposed approach thus integrates the automatic, data-driven extraction of emergent space coordinates parametrizing the agent dynamics, with machine-learning assisted identification of an emergent PDE description of the dynamics in this parametrization.

Description

Keywords

Machine Learning, Neural Networks, Computer, Neurons

Citation

Kemeth FP, Bertalan T, Thiem T, Dietrich F, Moon SJ, Laing CR, Kevrekidis IG. (2022). Learning emergent partial differential equations in a learned emergent space.. Nat Commun. 13. 1. (pp. 3318-).

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as (c) 2022 The Author/s