Browsing by Author "Bennett DP"
Now showing 1 - 20 of 40
Results Per Page
Sort Options
- ItemAdaptive Optics Imaging Can Break the Central Caustic Cusp Approach Degeneracy in High-magnification Microlensing Events(IOP Publishing on behalf of the American Astronomical Society, 2022-11-01) Terry SK; Bennett DP; Bhattacharya A; Koshimoto N; Beaulieu J-P; Blackman JW; Bond IA; Cole AA; Lu JR; Marquette JB; Ranc C; Rektsini N; Vandorou AWe report new results for the gravitational microlensing target OGLE-2011-BLG-0950 from adaptive optics images using the Keck Observatory. The original analysis by Choi et al. and reanalysis by Suzuki et al. report degenerate solutions between planetary and stellar binary lens systems. This particular case is the most important type of degeneracy for exoplanet demographics because the distinction between a planetary mass or stellar binary companion has direct consequences for microlensing exoplanet statistics. The 8 and 10 yr baselines allow us to directly measure a relative proper motion of 4.20 ± 0.21 mas yr−1, confirming the detection of the lens star system and ruling out the planetary companion models that predict a ∼4× smaller relative proper motion. The Keck data also rule out the wide stellar binary solution unless one of the components is a stellar remnant. The combination of the lens brightness and close stellar binary light-curve parameters yields primary and secondary star masses of M A = 1.12 − 0.09 + 0.11 and M B = 0.47 − 0.10 + 0.13 M ☉ at a distance of D L = 6.70 − 0.30 + 0.55 kpc and a projected separation of 0.39 − 0.04 + 0.05 au. Assuming that the predicted proper motions are measurably different, the high-resolution imaging method described here can be used to disentangle this degeneracy for events observed by the Roman exoplanet microlensing survey using Roman images taken near the beginning or end of the survey.
- ItemAn analysis of binary microlensing event OGLE-2015-BLG-0060(Oxford University Press on behalf of the Royal Astronomical Society, 2019-08) Tsapras Y; Cassan A; Ranc C; Bachelet E; Street R; Udalski A; Hundertmark M; Bozza V; Beaulieu JP; Marquette JB; Euteneuer E; Bramich DM; Dominik M; Figuera Jaimes R; Horne K; Mao S; Menzies J; Schmidt R; Snodgrass C; Steele IA; Wambsganss J; Mróz P; Szymański MK; Soszyński I; Skowron J; Pietrukowicz P; Kozłowski S; Poleski R; Ulaczyk K; Pawlak M; Jørgensen UG; Skottfelt J; Popovas A; Ciceri S; Korhonen H; Kuffmeier M; Evans DF; Peixinho N; Hinse TC; Burgdorf MJ; Southworth J; Tronsgaard R; Kerins E; Andersen MI; Rahvar S; Wang Y; Wertz O; Rabus M; Calchi Novati S; D'Ago G; Scarpetta G; Mancini L; Abe F; Asakura Y; Bennett DP; Bhattacharya A; Donachie M; Evans P; Fukui A; Hirao Y; Itow Y; Kawasaki K; Koshimoto N; Li MCA; Ling CH; Masuda K; Matsubara Y; Muraki Y; Miyazaki S; Nagakane M; Ohnishi K; Rattenbury N; Saito T; Sharan A; Shibai H; Sullivan DJ; Sumi T; Suzuki D; Tristram PJ; Yamada T; Yonehara A; The RoboNet team; The OGLE collaboration; The MiNDSTEp collaboration; The MOA collaborationWe present the analysis of stellar binary microlensing event OGLE-2015-BLG-0060 based on observations obtained from 13 different telescopes. Intensive coverage of the anomalous parts of the light curve was achieved by automated follow-up observations from the robotic telescopes of the Las Cumbres Observatory. We show that, for the first time, all main features of an anomalous microlensing event are well covered by follow-up data, allowing us to estimate the physical parameters of the lens. The strong detection of second-order effects in the event light curve necessitates the inclusion of longer-baseline survey data in order to constrain the parallax vector. We find that the event was most likely caused by a stellar binary-lens with masses M = 0.87 pm 0.12 mathrm{M} and M = 0.77 pm 0.11 mathrm{M}. The distance to the lensing system is 6.41 ± 0.14 kpc and the projected separation between the two components is 13.85 ± 0.16 au. Alternative interpretations are also considered.
- ItemAn Isolated Mass-gap Black Hole or Neutron Star Detected with Astrometric Microlensing(IOP Publishing, 2022-07-06) Lam CY; Lu JR; Udalski A; Bond I; Bennett DP; Skowron J; Mróz P; Poleski R; Sumi T; Szymański MK; Kozłowski S; Pietrukowicz P; Soszyński I; Ulaczyk K; Wyrzykowski Ł; Miyazaki S; Suzuki D; Koshimoto N; Rattenbury NJ; Hosek Jr MW; Abe F; Barry R; Bhattacharya A; Fukui A; Fujii H; Hirao Y; Itow Y; Kirikawa R; Kondo I; Matsubara Y; Matsumoto S; Muraki Y; Olmschenk G; Ranc C; Okamura A; Satoh Y; Silva SI; Toda T; Tristram PJ; Vandorou A; Yama H; Abrams NS; Agarwal S; Rose S; Terry SKWe present the analysis of five black hole candidates identified from gravitational microlensing surveys. Hubble Space Telescope astrometric data and densely sampled light curves from ground-based microlensing surveys are fit with a single-source, single-lens microlensing model in order to measure the mass and luminosity of each lens and determine if it is a black hole. One of the five targets (OGLE-2011-BLG-0462/MOA-2011-BLG-191 or OB110462 for short) shows a significant >1 mas coherent astrometric shift, little to no lens flux, and has an inferred lens mass of 1.6-4.4 M . This makes OB110462 the first definitive discovery of a compact object through astrometric microlensing and it is most likely either a neutron star or a low-mass black hole. This compact-object lens is relatively nearby (0.70-1.92 kpc) and has a slow transverse motion of 30 km s-1. OB110462 shows significant tension between models well fit to photometry versus astrometry, making it currently difficult to distinguish between a neutron star and a black hole. Additional observations and modeling with more complex system geometries, such as binary sources, are needed to resolve the puzzling nature of this object. For the remaining four candidates, the lens masses are 2M , and they are unlikely to be black holes two of the four are likely white dwarfs or neutron stars. We compare the full sample of five candidates to theoretical expectations on the number of black holes in the Milky Way (1/4108) and find reasonable agreement given the small sample size.
- ItemAn Isolated Stellar-mass Black Hole Detected through Astrometric Microlensing(IOP Publishing on behalf of the American Astronomical Society, 2022-07-06) Sahu KC; Anderson J; Casertano S; Bond HE; Udalski A; Dominik M; Calamida A; Bellini A; Brown TM; Rejkuba M; Bajaj V; Kains N; Ferguson HC; Fryer CL; Yock P; Mróz P; Kozłowski S; Pietrukowicz P; Poleski R; Skowron J; Soszyński I; Szymański MK; Ulaczyk K; Wyrzykowski Ł; Barry RK; Bennett DP; Bond IA; Hirao Y; Silva SI; Kondo I; Koshimoto N; Ranc C; Rattenbury NJ; Sumi T; Suzuki D; Tristram PJ; Vandorou A; Beaulieu J-P; Marquette J-B; Cole A; Fouqué P; Hill K; Dieters S; Coutures C; Dominis-Prester D; Bennett C; Bachelet E; Menzies J; Albrow M; Pollard K; Gould A; Yee JC; Allen W; Almeida LA; Christie G; Drummond J; Gal-Yam A; Gorbikov E; Jablonski F; Lee C-U; Maoz D; Manulis I; McCormick J; Natusch T; Pogge RW; Shvartzvald Y; Jørgensen UG; Alsubai KA; Andersen MI; Bozza V; Novati SC; Burgdorf M; Hinse TC; Hundertmark M; Husser T-O; Kerins E; Longa-Peña P; Mancini L; Penny M; Rahvar S; Ricci D; Sajadian S; Skottfelt J; Snodgrass C; Southworth J; Tregloan-Reed J; Wambsganss J; Wertz O; Tsapras Y; Street RA; Bramich DM; Horne K; Steele IAWe report the first unambiguous detection and mass measurement of an isolated stellar-mass black hole (BH). We used the Hubble Space Telescope (HST) to carry out precise astrometry of the source star of the long-duration (t E ≃ 270 days), high-magnification microlensing event MOA-2011-BLG-191/OGLE-2011-BLG-0462 (hereafter designated as MOA-11-191/OGLE-11-462), in the direction of the Galactic bulge. HST imaging, conducted at eight epochs over an interval of 6 yr, reveals a clear relativistic astrometric deflection of the background star's apparent position. Ground-based photometry of MOA-11-191/OGLE-11-462 shows a parallactic signature of the effect of Earth's motion on the microlensing light curve. Combining the HST astrometry with the ground-based light curve and the derived parallax, we obtain a lens mass of 7.1 ± 1.3 M ⊙ and a distance of 1.58 ± 0.18 kpc. We show that the lens emits no detectable light, which, along with having a mass higher than is possible for a white dwarf or neutron star, confirms its BH nature. Our analysis also provides an absolute proper motion for the BH. The proper motion is offset from the mean motion of Galactic disk stars at similar distances by an amount corresponding to a transverse space velocity of �1/445 km s-1, suggesting that the BH received a "natal kick"from its supernova explosion. Previous mass determinations for stellar-mass BHs have come from radial velocity measurements of Galactic X-ray binaries and from gravitational radiation emitted by merging BHs in binary systems in external galaxies. Our mass measurement is the first for an isolated stellar-mass BH using any technique.
- ItemAnalysis of the Full Spitzer Microlensing Sample. I. Dark Remnant Candidates and Gaia Predictions(American Astronomical Society, 2024-11-10) Rybicki KA; Shvartzvald Y; Yee JC; Novati SC; Ofek EO; Bond IA; Beichman C; Bryden G; Carey S; Henderson C; Zhu W; Fausnaugh MM; Wibking B; Udalski A; Poleski R; Mróz P; Szymański MK; Soszyński I; Pietrukowicz P; Kozłowski S; Skowron J; Ulaczyk K; Iwanek P; Wrona M; Ryu Y-H; Albrow MD; Chung S-J; Gould A; Han C-H; Hwang K-H; Jung YK; Shin I-G; Yang H; Zang W; Cha S-M; Kim D-J; Kim H-W; Kim S-L; Lee C-U; Lee D-J; Lee Y; Park B-G; Pogge RW; Abe F; Barry R; Bennett DP; Bhattacharya A; Fukui A; Hamada R; Hamada S; Hamasaki N; Hirao Y; Ishitani Silva S; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh YK; Sumi T; Suzuki D; Tristram PJ; Vandorou A; Yama H; Wyrzykowski Ł; Howil K; Kruszyńska KIn the pursuit of understanding the population of stellar remnants within the Milky Way, we analyze the sample of ∼950 microlensing events observed by the Spitzer Space Telescope between 2014 and 2019. In this study we focus on a subsample of nine microlensing events, selected based on their long timescales, small microlensing parallaxes, and joint observations by the Gaia mission, to increase the probability that the chosen lenses are massive and the mass is measurable. Among the selected events we identify lensing black holes and neutron star candidates, with potential confirmation through forthcoming release of the Gaia time-series astrometry in 2026. Utilizing Bayesian analysis and Galactic models, along with the Gaia Data Release 3 proper-motion data, four good candidates for dark remnants were identified: OGLE-2016-BLG-0293, OGLE-2018-BLG-0483, OGLE-2018-BLG-0662, and OGLE-2015-BLG-0149, with lens masses of 3.0-1.3+1.8M☉, 4.7-2.1+3.2 M☉, 3.15-0.64+0..66 M☉ and 1.40-0.55+0.75 M☉, respectively. Notably, the first two candidates are expected to exhibit astrometric microlensing signals detectable by Gaia, offering the prospect of validating the lens masses. The methodologies developed in this work will be applied to the full Spitzer microlensing sample, populating and analyzing the timescale (tE) versus parallax (πE) diagram to derive constraints on the population of lenses in general and massive remnants in particular.
- ItemAsteroid Lightcurves from the MOA-II Survey: A pilot study(Oxford University Press on behalf of Royal Astronomical Society, 2022-08) Cordwell AJ; Rattenbury NJ; Bannister MT; Cowan P; Abe F; Barry R; Bennett DP; Bhattacharya A; Bond IA; Fujii H; Fukui A; Itow Y; Silva SI; Hirao Y; Kirikawa R; Kondo I; Koshimoto N; Matsubara Y; Matsumoto S; Muraki Y; Miyazaki S; Okamura A; Ranc C; Satoh Y; Sumi T; Suzuki D; Tristram PJ; Toda T; Yama H; Yonehara AThe Microlensing Observations in Astrophysics (MOA-II) survey has performed high cadence, wide field observations of the Galactic Bulge from New Zealand since 2005. The hourly cadence of the survey during eight months of the year, across nearly 50 deg2 of sky, provides an opportunity to sample asteroid lightcurves in the broad MOA-R filter. We perform photometry of a subset of bright asteroids numbered observed by the survey. We obtain 26 asteroid rotation periods, including for two asteroids where no prior data exist, and present evidence for the possible non-principal axis rotation of (2011) Veteraniya. This archival search could be extended to several thousands of asteroids brighter than 22nd magnitude.
- ItemBrown dwarf companions in binaries detected in the 2021 season high-cadence microlensing surveys(EDP Sciences on behalf of The European Southern Observatory, 2023-10) Han C; Jung YK; Bond IA; Chung S-J; Albrow MD; Gould A; Hwang K-H; Lee C-U; Ryu Y-H; Shin I-G; Shvartzvald Y; Yang H; Yee JC; Zang W; Cha S-M; Kim D-J; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hirao Y; Ishitani Silva S; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita KAims. As a part of the project aiming to build a homogeneous sample of binary-lens (2L1S) events containing brown dwarf (BD) companions, we investigate the 2021 season microlensing data collected by the Korea Microlensing Telescope Network (KMTNet) survey. Methods. For this purpose, we first identified 2L1S events by conducting systematic analyses of anomalous lensing events. We then selected candidate BD companion events by applying the criterion that the mass ratio of the lens components is lower than qth∼ 0.1. Results. From this procedure, we find four events including KMT-2021-BLG-0588, KMT-2021-BLG-1110, KMT-2021-BLG-1643, and KMT-2021-BLG-1770, for which the estimated mass ratios are q∼ 0.10, 0.07, 0.08, and 0.15, respectively. Event KMT-2021-BLG-1770 was selected as a candidate even though the mass ratio is slightly greater than qth because the lens mass expected from the measured short timescale of the event, tE∼ 7.6 days, is low. From the Bayesian analyses, we estimate that the primary and companion masses are (M1/M⊙,M2/M⊙) = (0.54- 0.24+0.31, 0.053- 0.023+0.031) for KMT-2021-BLG-0588L, (0.74- 0.35+0.27, 0.055- 0.026+0.020) for KMT-2021-BLG-1110L, (0.73- 0.17+0.24,0.061- 0.014+0.020) for KMT-2021-BLG-1643L, and (0.13- 0.07+0.18, 0.020- 0.011+0.028) for KMT-2021-BLG-1770L. It is estimated that the probabilities that the lens companions are in the BD mass range are 82%, 85%, 91%, and 59% for the individual events. To confirm the BD nature of the lens companions found in this and previous works by directly imaging the lenses from future high-resolution adaptive-optics (AO) followup observations, we provide the lens-source separations expected in 2030, which is the approximate year of the first AO light on 30 m class telescopes
- ItemBrown dwarf companions in microlensing binaries detected during the 2016-2018 seasons(EDP Sciences on behalf of the European Southern Observatory, 2022-11-08) Han C; Ryu Y-H; Shin I-G; Jung YK; Kim D; Hirao Y; Bozza V; Albrow MD; Zang W; Udalski A; Bond IA; Chung S-J; Gould A; Hwang K-H; Shvartzvald Y; Yang H; Cha S-M; Kim D-J; Kim H-W; Kim S-L; Lee C-U; Lee D-J; Yee JC; Lee Y; Park B-G; Pogge RW; Mróz P; Szymański MK; Skowron J; Poleski R; Soszyński I; Pietrukowicz P; Kozłowski S; Ulaczyk K; Rybicki KA; Iwanek P; Wrona M; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Silva SI; Kirikawa R; Kondo I; Koshimoto N; Matsubara Y; Matsumoto S; Miyazaki S; Muraki Y; Okamura A; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Toda T; Tristram PJ; Vandorou A; Yama H; Itow YAims. With the aim of finding microlensing binaries containing brown dwarf (BD) companions, we investigate the microlensing survey data collected during the 2016 2018 seasons. Methods. For this purpose, we first modeled lensing events with light curves exhibiting anomaly features that are likely to be produced by binary lenses. We then sorted out BD companion binary-lens events by applying the criterion that the companion-to-primary mass ratio is q 0.1. With this procedure, we identify six binaries with candidate BD companions: OGLE-2016-BLG-0890L, MOA-2017-BLG-477L, OGLE-2017-BLG-0614L, KMT-2018-BLG-0357L, OGLE-2018-BLG-1489L, and OGLE-2018-BLG-0360L. Results. We estimated the masses of the binary companions by conducting Bayesian analyses using the observables of the individual lensing events. According to the Bayesian estimation of the lens masses, the probabilities for the lens companions of the events OGLE-2016-BLG-0890, OGLE-2017-BLG-0614, OGLE-2018-BLG-1489, and OGLE-2018-BLG-0360 to be in the BD mass regime are very high with PBD > 80%. For MOA-2017-BLG-477 and KMT-2018-BLG-0357, the probabilities are relatively low with PBD = 61% and 69%, respectively.
- ItemConfirmation of Color-dependent Centroid Shift Measured After 1.8 Years with HST(American Astronomical Society, 2023-04-19) Bhattacharya A; Bennett DP; Beaulieu JP; Bond IA; Koshimoto N; Lu JR; Blackman JW; Ranc C; Vandorou A; Terry SK; Marquette JB; Cole AA; Fukui AWe measured the precise masses of the host and planet in the OGLE-2003-BLG-235 system, when the lens and source were resolving, with 2018 Keck high resolution images. This measurement is in agreement with the observation taken in 2005 with the Hubble Space Telescope (HST). In the 2005 data, the lens and sources were not resolved and the measurement was made using color-dependent centroid shift only. The Nancy Grace Roman Space Telescope will measure masses using data typically taken within 3-4 yr of the peak of the event, which is a much shorter baseline when compared to most of the mass measurements to date. Hence, the color-dependent centroid shift will be one of the primary methods of mass measurements for the Roman telescope. Yet, mass measurements of only two events (OGLE-2003-BLG-235 and OGLE-2005-BLG-071) have been done using the color-dependent centroid shift method so far. The accuracy of the measurements using this method are neither completely known nor well studied. The agreement of the Keck and HST results, as shown in this paper, is very important because this agreement confirms the accuracy of the mass measurements determined at a small lens-source separation using the color-dependent centroid shift method. It also shows that with >100 high resolution images, the Roman telescope will be able to use color-dependent centroid shift at a 3-4 yr time baseline and produce mass measurements. We find that OGLE-2003-BLG-235 is a planetary system that consists of a 2.34 ± 0.43M Jup planet orbiting a 0.56 ± 0.06M ⊙ K-dwarf host star at a distance of 5.26 ± 0.71 kpc from the Sun.
- ItemDark lens candidates from Gaia Data Release 3(EDP Sciences, France, for The European Southern Observatory, 2024-12) Kruszyńska K; Wyrzykowski L; Rybicki KA; Howil K; Jablońska M; Kaczmarek Z; Ihanec N; Maskoliūnas M; Bronikowski M; Pylypenko U; Udalski A; Mróz P; Poleski R; Skowron J; Szymański MK; Soszyński I; Pietrukowicz P; Kozlowski S; Ulaczyk K; Iwanek P; Wrona M; Gromadzki M; Mróz MJ; Abe F; Bando K; Barry R; Bennett DP; Bhattacharya A; Bond IA; Fukui A; Hamada R; Hamada S; Hamasaki N; Hirao Y; Ishitani Silva S; Itow Y; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tristram PJ; Vandorou A; Yama HGravitational microlensing is a phenomenon that allows us to observe the dark remnants of stellar evolution, even if these bodies are no longer emitting electromagnetic radiation. In particular, it can be useful to observe solitary neutron stars or stellar-mass black holes, providing a unique window through which to understand stellar evolution. Obtaining direct mass measurements with this technique requires precise observations of both the change in brightness and the position of the microlensed star. The European Space Agency's Gaia satellite can provide both. Using publicly available data from different surveys, we analysed events published in the Gaia Data Release 3 (Gaia DR3) microlensing catalogue. Here, we describe our selection of candidate dark lenses, where we suspect the lens is a white dwarf (WD), a neutron star (NS), a black hole (BH), or a mass-gap object, with a mass in the range between the heaviest NS and the least massive BH. We estimated the mass of the lenses using information obtained from the best-fitting microlensing models, source star, Galactic model, and the expected parameter distributions. We found eleven candidates for dark remnants: one WDs, three NSs, three mass-gap objects, and four BHs.
- ItemFour microlensing giant planets detected through signals produced by minor-image perturbations(EDP Sciences on behalf of The European Southern Observatory, 2024-07) Han C; Bond IA; Lee C-U; Gould A; Albrow MD; Chung S-J; Hwang K-H; Jung YK; Ryu Y-H; Shvartzvald Y; Shin I-G; Yee JC; Yang H; Zang W; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Abe F; Bando K; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hamada S; Hamasaki N; Hirao Y; Silva SI; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita K; Bachelet E; Rota P; Bozza V; Zielinski P; Street RA; Tsapras Y; Hundertmark M; Wambsganss J; Wyrzykowski Ł; Jaimes RF; Cassan A; Dominik M; Rybicki KA; Rabus MAims. We investigated the nature of the anomalies appearing in four microlensing events KMT-2020-BLG-0757, KMT-2022-BLG-0732, KMT-2022-BLG-1787, and KMT-2022-BLG-1852. The light curves of these events commonly exhibit initial bumps followed by subsequent troughs that extend across a substantial portion of the light curves. Methods. We performed thorough modeling of the anomalies to elucidate their characteristics. Despite their prolonged durations, which differ from the usual brief anomalies observed in typical planetary events, our analysis revealed that each anomaly in these events originated from a planetary companion located within the Einstein ring of the primary star. It was found that the initial bump arouse when the source star crossed one of the planetary caustics, while the subsequent trough feature occurred as the source traversed the region of minor image perturbations lying between the pair of planetary caustics. Results. The estimated masses of the host and planet, their mass ratios, and the distance to the discovered planetary systems are (Mhost/M☉, Mplanet/MJ, q/10−3, DL/kpc) = (0.58−+00.3033, 10.71−+56.6117, 17.61 ± 2.25, 6.67+−01.9330) for KMT-2020-BLG-0757, (0.53+−00.3131, 1.12+−00.6565, 2.01 ± 0.07, 6.66+−11.1984) for KMT-2022-BLG-0732, (0.42−+00.2332, 6.64−+43.9864, 15.07 ± 0.86, 7.55+−01.8930) for KMT-2022-BLG-1787, and (0.32+−00.3419, 4.98+−52.4294, 8.74 ± 0.49, 6.27+−01.9015) for KMT-2022-BLG-1852. These parameters indicate that all the planets are giants with masses exceeding the mass of Jupiter in our solar system and the hosts are low-mass stars with masses substantially less massive than the Sun.
- ItemFour sub-Jovian-mass planets detected by high-cadence microlensing surveys(EDP Sciences on behalf of the European Southern Observatory, 2022-08-05) Han C; Kim D; Gould A; Udalski A; Bond IA; Bozza V; Jung YK; Albrow MD; Chung S-J; Hwang K-H; Ryu Y-H; Shin I-G; Shvartzvald Y; Yee JC; Zang W; Cha S-M; Kim D-J; Kim S-L; Lee C-U; Lee D-J; Lee Y; Park B-G; Pogge RW; Mróz P; Szymański MK; Skowron J; Poleski R; Soszyński I; Pietrukowicz P; Kozaowski S; Ulaczyk K; Rybicki KA; Iwanek P; Abe F; Barry RK; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hirao Y; Itow Y; Kirikawa R; Koshimoto N; Kondo I; Matsubara Y; Matsumoto S; Miyazaki S; Muraki Y; Olmschenk G; Okamura A; Ranc C; Rattenbury NJ; Satoh Y; Silva SI; Sumi T; Suzuki D; Toda T; Tristram PJ; Vandorou A; Yama HAims. With the aim of finding short-term planetary signals, we investigated the data collected from current high-cadence microlensing surveys. Methods. From this investigation, we found four planetary systems with low planet-to-host mass ratios, including OGLE-2017-BLG-1691L, KMT-2021-BLG-0320L, KMT-2021-BLG-1303L, and KMT-2021-BLG-1554L. Despite the short durations, ranging from a few hours to a couple of days, the planetary signals were clearly detected by the combined data of the lensing surveys. We found that three of the planetary systems have mass ratios on the order of 10-4 and the other has a mass ratio that is slightly greater than 10-3. Results. The estimated masses indicate that all discovered planets have sub-Jovian masses. The planet masses of KMT-2021-BLG-0320Lb, KMT-2021-BLG-1303Lb, and KMT-2021-BLG-1554Lb correspond to ∼0.10, ∼0.38, and ∼0.12 times the mass of the Jupiter, and the mass of OGLE-2017-BLG-1691Lb corresponds to that of the Uranus. The estimated mass of the planet host KMT-2021-BLG-1554L, Mhost ∼ 0.08 M⊙, corresponds to the boundary between a star and a brown dwarf. Besides this system, the host stars of the other planetary systems are low-mass stars with masses in the range of ∼[0.3-0.6] M⊙. The discoveries of the planets fully demonstrate the capability of the current high-cadence microlensing surveys in detecting low-mass planets.
- ItemFree-floating Planet Mass Function from MOA-II 9 yr Survey toward the Galactic Bulge(IOP Publishing, 2023-08-16) Sumi T; Koshimoto N; Bennett DP; Rattenbury NJ; Abe F; Barry R; Bhattacharya A; Bond IA; Fujii H; Fukui A; Hamada R; Hirao Y; Ishitani Silva S; Itow Y; Kirikawa R; Kondo I; Matsubara Y; Miyazaki S; Muraki Y; Olmschenk G; Ranc C; Satoh Y; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita KWe present the first measurement of the mass function of free-floating planets (FFPs), or very wide orbit planets down to an Earth mass, from the MOA-II microlensing survey in 2006-2014. Six events are likely to be due to planets with Einstein radius crossing times t E < 0.5 days, and the shortest has t E = 0.057 ± 0.016 days and an angular Einstein radius of θ E = 0.90 ± 0.14 μas. We measure the detection efficiency depending on both t E and θ E with image-level simulations for the first time. These short events are well modeled by a power-law mass function, dN 4/d log M = ( 2.18 − 1.40 + 0.52 ) × ( M / 8 M ⊕ ) − α 4 dex−1 star−1 with α 4 = 0.96 − 0.27 + 0.47 for M/M⊙ < 0.02. This implies a total of f = 21 − 13 + 23 FFPs or very wide orbit planets of mass 0.33 < M/M ⊕ < 6660 per star, with a total mass of 80 − 47 + 73 M ⊕ star−1. The number of FFPs is 19 − 13 + 23 times the number of planets in wide orbits (beyond the snow line), while the total masses are of the same order. This suggests that the FFPs have been ejected from bound planetary systems that may have had an initial mass function with a power-law index of α ∼ 0.9, which would imply a total mass of 171 − 52 + 80 M ⊕ star−1. This model predicts that Roman Space Telescope will detect 988 − 566 + 1848 FFPs with masses down to that of Mars (including 575 − 424 + 1733 with 0.1 ≤ M/M ⊕ ≤ 1). The Sumi et al. large Jupiter-mass FFP population is excluded.
- ItemKeck and Hubble Observations Show that MOA-2008-BLG-379Lb is a Super-Jupiter Orbiting an M Dwarf(American Astronomical Society, New York; Currently published by IOP Publishing, 2024-07-01) Bennett DP; Bhattacharya A; Beaulieu J-P; Koshimoto N; Blackman JW; Bond IA; Ranc C; Rektsini N; Terry SK; Vandorou A; Lu JR; Marquette JB; Olmschenk G; Suzuki DWe present high angular resolution imaging that detects the MOA-2008-BLG-379L exoplanet host star using Keck adaptive optics and the Hubble Space Telescope. These observations reveal host star and planet masses of M host = 0.434 ± 0.065 M ⊙ and m p = 2.44 ± 0.49 M Jupiter. They are located at a distance of D L = 3.44 ± 0.53 kpc, with a projected separation of 2.70 ± 0.42 au. These results contribute to our determination of exoplanet host star masses for the Suzuki et al. statistical sample, which will determine the dependence of the planet occurrence rate on the mass and distance of the host stars. We also present a detailed discussion of the image-constrained modeling version of the eesunhong light-curve modeling code that applies high angular resolution image constraints to the light-curve modeling process. This code increases modeling efficiency by a large factor by excluding models that are inconsistent with the high angular resolution images. The analysis of this and other events from the Suzuki et al. statistical sample reveals the importance of including higher-order effects, such as microlensing parallax and planetary orbital motion, even when these features are not required to fit the light-curve data. The inclusion of these effects may be needed to obtain accurate estimates of the uncertainty of other microlensing parameters that affect the inferred properties of exoplanet microlens systems. This will be important for the exoplanet microlensing survey of the Roman Space Telescope, which will use both light-curve photometry and high angular resolution imaging to characterize planetary microlens systems.
- ItemKepler K2 Campaign 9 – II. First space-based discovery of an exoplanet using microlensing(Oxford University Press, 2023-04-01) Specht D; Poleski R; Penny MT; Kerins E; McDonald I; Chung-Uk L; Udalski A; Bond IA; Shvartzvald Y; Zang W; Street RA; Hogg DW; Gaudi BS; Barclay T; Barentsen G; Howell SB; Mullally F; Henderson CB; Bryson ST; Caldwell DA; Haas MR; Van Cleve JE; Larson K; McCalmont K; Peterson C; Putnam D; Ross S; Packard M; Reedy L; Albrow MD; Sun-Ju C; Jung YK; Gould A; Han C; Kyu-Ha H; Yoon-Hyun R; In-Gu S; Yang H; Yee JC; Sang-Mok C; Dong-Jin K; Seung-Lee K; Dong-Joo L; Lee Y; Byeong-Gon P; Pogge RW; Szymański MK; Soszyński I; Ulaczyk K; Pietrukowicz P; Kozłowski SZ; Skowron J; Mróz P; Mao S; Fouqué P; Zhu W; Abe F; Barry R; Bennett DP; Bhattacharya A; Fukui A; Fujii H; Hirao Y; Itow Y; Kirikawa R; Kondo I; Koshimoto N; Matsubara Y; Matsumoto S; Miyazaki S; Muraki Y; Olmschenk G; Ranc C; Okamura A; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Silva SI; Toda T; Tristram PJ; Vandorou A; Yama H; Beichman C; Bryden G; Novati SCWe present K2-2016-BLG-0005Lb, a densely sampled, planetary binary caustic-crossing microlensing event found from a blind search of data gathered from Campaign 9 of the Kepler K2 mission (K2C9). K2-2016-BLG-0005Lb is the first bound microlensing exoplanet discovered from space-based data. The event has caustic entry and exit points that are resolved in the K2C9 data, enabling the lens-source relative proper motion to be measured. We have fitted a binary microlens model to the Kepler data and to simultaneous observations from multiple ground-based surveys. Whilst the ground-based data only sparsely sample the binary caustic, they provide a clear detection of parallax that allows us to break completely the microlensing mass-position-velocity degeneracy and measure the planet’s mass directly. We find a host mass of 0.58 ± 0.04 M and a planetary mass of 1.1 ± 0.1 MJ. The system lies at a distance of 5.2 ± 0.2 kpc from Earth towards the Galactic bulge, more than twice the distance of the previous most distant planet found by Kepler. The sky-projected separation of the planet from its host is found to be 4.2 ± 0.3 au which, for circular orbits, deprojects to a host separation a = 4.4+−0149 au and orbital period P = 13+−29 yr. This makes K2-2016-BLG-0005Lb a close Jupiter analogue orbiting a low-mass host star. According to current planet formation models, this system is very close to the host mass threshold below which Jupiters are not expected to form. Upcoming space-based exoplanet microlensing surveys by NASA’s Nancy Grace Roman Space Telescope and, possibly, ESA’s Euclid mission, will provide demanding tests of current planet formation models.
- ItemKMT-2019-BLG-1715: Planetary microlensing event with three lens masses and two source stars(IOP Publishing on behalf of the American Astronomical Society, 2021-06-01) Han C; Udalski A; Kim D; Jung YK; Lee C-U; Bond IA; Albrow MD; Chung S-J; Gould A; Hwang K-H; Kim H-W; Ryu Y-H; Shin I-G; Shvartzvald Y; Zang W; Yee JC; Cha S-M; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Kim C-H; Kim W-T; Mróz P; Szymański MK; Skowron J; Poleski R; Soszyński I; Pietrukowicz P; Kozłowski S; Ulaczyk K; Rybicki KA; Iwanek P; Wrona M; Gromadzki M; Abe F; Barry R; Bennett DP; Bhattacharya A; Donachie M; Fujii H; Fukui A; Itow Y; Hirao Y; Kirikawa R; Kondo I; Li MCA; Matsubara Y; Muraki Y; Miyazaki S; Ranc C; Rattenbury NJ; Satoh Y; Shoji H; Suematsu H; Sumi T; Suzuki D; Tanaka Y; Tristram PJ; Yamakawa T; Yamawaki T; Yonehara AWe investigate the gravitational microlensing event KMT-2019-BLG-1715, the light curve of which shows two short-term anomalies from a caustic-crossing binary-lensing light curve: one with a large deviation and the other with a small deviation. We identify five pairs of solutions, in which the anomalies are explained by adding an extra lens or source component in addition to the base binary-lens model. We resolve the degeneracies by applying a method in which the measured flux ratio between the first and second source stars is compared with the flux ratio deduced from the ratio of the source radii. Applying this method leaves a single pair of viable solutions, in both of which the major anomaly is generated by a planetary-mass third body of the lens, and the minor anomaly is generated by a faint second source. A Bayesian analysis indicates that the lens comprises three masses: a planet-mass object with ∼2.6 MJ and binary stars of K and M dwarfs lying in the galactic disk. We point out the possibility that the lens is the blend, and this can be verified by conducting high-resolution follow-up imaging for the resolution of the lens from the source.
- ItemKMT-2021-BLG-0284, KMT-2022-BLG-2480, and KMT-2024-BLG-0412: Three microlensing events involving two lens masses and two source stars(EDP Sciences for The European Southern Observatory, 2024-12) Han C; Udalski A; Bond IA; Lee C-U; Gould A; Albrow MD; Chung S-J; Hwang K-H; Jung YK; Ryu Y-H; Shvartzvald Y; Shin I-G; Yee JC; Yang H; Zang W; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Mróz P; Szymanski MK; Skowron J; Poleski R; Soszynski I; Pietrukowicz P; Kozłowski S; Rybicki KA; Iwanek P; Ulaczyk K; Wrona M; Gromadzki M; Mróz MJ; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hirao Y; Ishitani Silva S; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita KAims. We carried out a project involving the systematic analysis of microlensing data from the Korea Microlensing Telescope Network survey. The aim of this project is to identify lensing events with complex anomaly features that are difficult to explain using standard binary-lens or binary-source models. Methods. Our investigation reveals that the light curves of microlensing events KMT-2021-BLG-0284, KMT-2022-BLG-2480, and KMT-2024BLG-0412 display highly complex patterns with three or more anomaly features. These features cannot be adequately explained by a binary-lens (2L1S) model alone. However, the 2L1S model can effectively describe certain segments of the light curve. By incorporating an additional source into the modeling, we identified a comprehensive model that accounts for all the observed anomaly features. Results. Bayesian analysis, based on constraints provided by lensing observables, indicates that the lenses of KMT-2021-BLG-0284 and KMT-2024-BLG-0412 are binary systems composed of M dwarfs. For KMT-2022-BLG-2480, the primary lens is an early K-type main-sequence star with an M dwarf companion. The lenses of KMT-2021-BLG-0284 and KMT-2024-BLG-0412 are likely located in the bulge, whereas the lens of KMT-2022-BLG-2480 is more likely situated in the disk. In all events, the binary stars of the sources have similar magnitudes due to a detection bias favoring binary source events with a relatively bright secondary source star, which increases detection efficiency.
- ItemKMT-2021-BLG-1077L: The fifth confirmed multiplanetary system detected by microlensing(EDP Sciences on behalf of the European Southern Observatory, 2022-06-20) Han C; Gould A; Bond IA; Jung YK; Albrow MD; Chung S-J; Hwang K-H; Ryu Y-H; Shin I-G; Shvartzvald Y; Yee JC; Zang W; Cha S-M; Kim D-J; Kim S-L; Lee C-U; Lee D-J; Lee Y; Park B-G; Pogge RW; Kim D; Abe F; Barry RK; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hirao Y; Itow Y; Kirikawa R; Koshimoto N; Kondo I; Matsubara Y; Matsumoto S; Miyazaki S; Muraki Y; Olmschenk G; Okamura A; Ranc C; Rattenbury NJ; Satoh Y; Silva SI; Sumi T; Suzuki D; Toda T; Tristram PJ; Vandorou A; Yama HAims. The high-magnification microlensing event KMT-2021-BLG-1077 exhibits a subtle and complex anomaly pattern in the region around the peak. We analyze the lensing light curve of the event with the aim of revealing the nature of the anomaly. Methods. We test various models in combination with several interpretations: that the lens is a binary (2L1S), the source is a binary (1L2S), both the lens and source are binaries (2L2S), or the lens is a triple system (3L1S). We search for the best-fit models under the individual interpretations of the lens and source systems. Results. We find that the anomaly cannot be explained by the usual three-body (2L1S and 1L2S) models. The 2L2S model improves the fit compared to the three-body models, but it still leaves noticeable residuals. On the other hand, the 3L1S interpretation yields a model explaining all the major anomalous features in the lensing light curve. According to the 3L1S interpretation, the estimated mass ratios of the lens companions to the primary are ~1.56 A - 10a- 3 and ~1.75 A - 10a- 3, which correspond to ~1.6 and ~1.8 times the Jupiter/Sun mass ratio, respectively, and therefore the lens is a multiplanetary system containing two giant planets. With the constraints of the event time-scale and angular Einstein radius, it is found that the host of the lens system is a low-mass star of mid-to-late M spectral type with amass of Mh = 0.14a- 0.07+0.19 MI, and it hosts two gas giant planets with masses of Mp1 = 0.22a- 0.12+0.31 MJ and Mp2 = 0.25a- 0.13+0.35. The planets lie beyond the snow line of the host with projected separations of aap1 = 1.26a- 1.08+1.41 AU and aap2 = 0.93a- 0.80+1.05 AU. The planetary system resides in the Galactic bulge at a distance of DL = 8.24a- 1.16+1.02 kpc. The lens of the event is the fifth confirmed multiplanetary system detected by microlensing following OGLE-2006-BLG-109L, OGLE-2012-BLG-0026L, OGLE-2018-BLG-1011L, and OGLE-2019-BLG-0468L.
- ItemKMT-2022-BLG-0475Lb and KMT-2022-BLG-1480Lb: Microlensing ice giants detected via the non-caustic-crossing channel(EDP Sciences, France, 2023-08) Han C; Lee C-U; Bond IA; Zang W; Chung S-J; Albrow MD; Gould A; Hwang K-H; Jung YK; Ryu Y-H; Shin I-G; Shvartzvald Y; Yang H; Yee JC; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Mao S; Zhu W; Abe F; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hirao Y; Ishitani Silva S; Itow Y; Kirikawa R; Kondo I; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Toda T; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita KAims. We investigate the microlensing data collected in the 2022 season from high-cadence microlensing surveys in order to find weak signals produced by planetary companions to lenses. Methods. From these searches, we find that two lensing events, KMT-2022-BLG-0475 and KMT-2022-BLG-1480, exhibit weak short-term anomalies. From a detailed modeling of the lensing light curves, we determine that the anomalies are produced by planetary companions with a mass ratio to the primary of q 1.8 A-104 for KMT-2022-BLG-0475L and q 4.3 A-104 for KMT-2022-BLG-1480L. Results. We estimate that the host and planet masses and the projected planet-host separation are (Mh/M, Mp/MU, a/au) = (0.430.23+0.35, 1.730.92+1.42, 2.030.38+0.25) for KMT-2022-BLG-0475L and (0.180.09+0.16, 1.820.92+1.60, 1.220.14+0.15) for KMT-2022-BLG-1480L, where MU denotes the mass of Uranus. The two planetary systems have some characteristics in common: the primaries of the lenses are early-mid M dwarfs that lie in the Galactic bulge, and the companions are ice giants that lie beyond the snow lines of the planetary systems.
- ItemKMT-2023-BLG-1866Lb: Microlensing super-Earth around an M dwarf host(EDP Sciences for The European Southern Observatory, 2024-07) Han C; Bond IA; Udalski A; Lee C-U; Gould A; Albrow MD; Chung S-J; Hwang K-H; Jung YK; Ryu Y-H; Shvartzvald Y; Shin I-G; Yee JC; Yang H; Zang W; Cha S-M; Kim D; Kim D-J; Kim S-L; Lee D-J; Lee Y; Park B-G; Pogge RW; Abe F; Bando K; Barry R; Bennett DP; Bhattacharya A; Fujii H; Fukui A; Hamada R; Hamada S; Hamasaki N; Hirao Y; Ishitani Silva S; Itow Y; Kirikawa R; Koshimoto N; Matsubara Y; Miyazaki S; Muraki Y; Nagai T; Nunota K; Olmschenk G; Ranc C; Rattenbury NJ; Satoh Y; Sumi T; Suzuki D; Tomoyoshi M; Tristram PJ; Vandorou A; Yama H; Yamashita K; Mróz P; Szymański MK; Skowron J; Poleski RA; Soszyński I; Pietrukowicz P; Kozłowski S; Rybicki KA; Iwanek P; Ulaczyk K; Wrona M; Gromadzki M; Mróz MJAims. We aim to investigate the nature of the short-term anomaly that appears in the lensing light curve of KMT-2023-BLG-1866. The anomaly was only partly covered due to its short duration of less than a day, coupled with cloudy weather conditions and a restricted nighttime duration. Methods. Considering the intricacy of interpreting partially covered signals, we thoroughly explored all potential degenerate solutions. Through this process, we identified three planetary scenarios that account for the observed anomaly equally well. These scenarios are characterized by the specific planetary parameters: (s, q)inner = [0.9740 ± 0.0083, (2.46 ± 1.07) × 10-5], (s, q)intermediate = [0.9779 ± 0.0017, (1.56 ± 0.25) × 10-5], and (s, q)outer = [0.9894 ± 0.0107, (2.31 ± 1.29) × 10-5], where s and q denote the projected separation (scaled to the Einstein radius) and mass ratio between the planet and its host, respectively. We identify that the ambiguity between the inner and outer solutions stems from the inner-outer degeneracy, while the similarity between the intermediate solution and the others is due to an accidental degeneracy caused by incomplete anomaly coverage. Results. Through Bayesian analysis utilizing the constraints derived from measured lensing observables and blending flux, our estimation indicates that the lens system comprises a very-low-mass planet orbiting an early M-type star situated approximately (6.2-6.5) kpc from Earth in terms of median posterior values for the different solutions. The median mass of the planet host is in the range of (0.48-0.51) M⊙, and that of the planet's mass spans a range of (2.6-4.0) ME, varying across different solutions. The detection of KMT-2023-BLG-1866Lb signifies the extension of the lensing surveys to very-low-mass planets that have been difficult to detect in earlier surveys.