Browsing by Author "French NP"
Now showing 1 - 20 of 23
Results Per Page
Sort Options
- ItemA novel, stain-free, natural auto-fluorescent signal, Sig M, identified from cytometric and transcriptomic analysis of infectivity of Cryptosporidium hominis and Cryptosporidium parvum.(Frontiers Media S.A., 2023-05-22) Ogbuigwe P; Roberts JM; Knox MA; Heiser A; Pita A; Haack NA; Garcia-Ramirez JC; Velathanthiri N; Biggs PJ; French NP; Hayman DTS; Xu RCryptosporidiosis is a worldwide diarrheal disease caused by the protozoan Cryptosporidium. The primary symptom is diarrhea, but patients may exhibit different symptoms based on the species of the Cryptosporidium parasite they are infected with. Furthermore, some genotypes within species are more transmissible and apparently virulent than others. The mechanisms underpinning these differences are not understood, and an effective in vitro system for Cryptosporidium culture would help advance our understanding of these differences. Using COLO-680N cells, we employed flow cytometry and microscopy along with the C. parvum-specific antibody Sporo-Gloā¢ to characterize infected cells 48 h following an infection with C. parvum or C. hominis. The Cryptosporidium parvum-infected cells showed higher levels of signal using Sporo-Gloā¢ than C. hominis-infected cells, which was likely because Sporo-Gloā¢ was generated against C. parvum. We found a subset of cells from infected cultures that expressed a novel, dose-dependent auto-fluorescent signal that was detectable across a range of wavelengths. The population of cells that expressed this signal increased proportionately to the multiplicity of infection. The spectral cytometry results confirmed that the signature of this subset of host cells closely matched that of oocysts present in the infectious ecosystem, pointing to a parasitic origin. Present in both C. parvum and C. hominis cultures, we named this Sig M, and due to its distinct profile in cells from both infections, it could be a better marker for assessing Cryptosporidium infection in COLO-680N cells than Sporo-Gloā¢. We also noted Sig M's impact on Sporo-Gloā¢ detection as Sporo-Gloā¢ uses fluoroscein-isothiocynate, which is detected where Sig M also fluoresces. Lastly, we used NanoString nCounterĀ® analysis to investigate the transcriptomic landscape for the two Cryptosporidium species, assessing the gene expression of 144 host and parasite genes. Despite the host gene expression being at high levels, the levels of putative intracellular Cryptosporidium gene expression were low, with no significant difference from controls, which could be, in part, explained by the abundance of uninfected cells present as determined by both Sporo-Gloā¢ and Sig M analyses. This study shows for the first time that a natural auto-fluorescent signal, Sig M, linked to Cryptosporidium infection can be detected in infected host cells without any fluorescent labeling strategies and that the COLO-680N cell line and spectral cytometry could be useful tools to advance the understanding of Cryptosporidium infectivity.
- ItemCarriage of Extended-Spectrum-Beta-Lactamase- and AmpC Beta-Lactamase-Producing Escherichia coli Strains from Humans and Pets in the Same Households.(American Society for Microbiology, 24/11/2020) Toombs-Ruane LJ; Benschop J; French NP; Biggs PJ; Midwinter AC; Marshall JC; Chan M; DrinkoviÄ D; Fayaz A; Baker MG; Douwes J; Roberts MG; Burgess SAExtended-spectrum-beta-lactamase (ESBL)- or AmpC beta-lactamase (ACBL)-producing Escherichia coli bacteria are the most common cause of community-acquired multidrug-resistant urinary tract infections (UTIs) in New Zealand. The carriage of antimicrobial-resistant bacteria has been found in both people and pets from the same household; thus, the home environment may be a place where antimicrobial-resistant bacteria are shared between humans and pets. In this study, we sought to determine whether members (pets and people) of the households of human index cases with a UTI caused by an ESBL- or ACBL-producing E. coli strain also carried an ESBL- or ACBL-producing Enterobacteriaceae strain and, if so, whether it was a clonal match to the index case clinical strain. Index cases with a community-acquired UTI were recruited based on antimicrobial susceptibility testing of urine isolates. Fecal samples were collected from 18 non-index case people and 36 pets across 27 households. Eleven of the 27 households screened had non-index case household members (8/18 people and 5/36 animals) positive for ESBL- and/or ACBL-producing E. coli strains. Whole-genome sequence analysis of 125 E. coli isolates (including the clinical urine isolates) from these 11 households showed that within seven households, the same strain of ESBL-/ACBL-producing E. coli was cultured from both the index case and another person (5/11 households) or pet dog (2/11 households). These results suggest that transmission within the household may contribute to the community spread of ESBL- or ACBL-producing E. coliIMPORTANCEEnterobacteriaceae that produce extended-spectrum beta-lactamases (ESBLs) and AmpC beta-lactamases (ACBLs) are important pathogens and can cause community-acquired illnesses, such as urinary tract infections (UTIs). Fecal carriage of these resistant bacteria by companion animals may pose a risk for transmission to humans. Our work evaluated the sharing of ESBL- and ACBL-producing E. coli isolates between humans and companion animals. We found that in some households, dogs carried the same strain of ESBL-producing E. coli as the household member with a UTI. This suggests that transmission events between humans and animals (or vice versa) are likely occurring within the home environment and, therefore, the community as a whole. This is significant from a health perspective, when considering measures to minimize community transmission, and highlights that in order to manage community spread, we need to consider interventions at the household level.
- ItemCharacterising the drinking water microbiome on campgrounds in New Zealand(23/10/2012) Phiri BJ; Biggs PJ; Prattley DJ; Stevenson MA; Rainey PB; French NPWhole-genome, 16S and 18S ribosomal RNA (rRNA) analyses combined with conventional isolation techniques are being applied to profile microbial community DNA associated with drinking water on campgrounds. The current study has a serial cross-sectional design and is being conducted on 15 campgrounds that are situated across New Zealand (Figure 1) and are managed by the Department of Conservation (DOC). Preliminary results generally show low Escherichia coli counts in water, suggesting minimal faecal contamination, and a low proportion of faecal samples were positive for Campylobacter and Giardia.
- ItemCOVID-19 vaccine strategies for Aotearoa New Zealand: a mathematical modelling study(Elsevier Ltd, 2021-10) Nguyen T; Adnan M; Nguyen BP; de Ligt J; Geoghegan JL; Dean R; Jefferies S; Baker MG; Seah WKG; Sporle AA; French NP; Murdoch DR; Welch D; Simpson CRBackground: COVID-19 elimination measures, including border closures have been applied in New Zealand. We have modelled the potential effect of vaccination programmes for opening borders. Methods: We used a deterministic age-stratified Susceptible, Exposed, Infectious, Recovered (SEIR) model. We minimised spread by varying the age-stratified vaccine allocation to find the minimum herd immunity requirements (the effective reproduction number Reff<1 with closed borders) under various vaccine effectiveness (VE) scenarios and R0 values. We ran two-year open-border simulations for two vaccine strategies: minimising Reff and targeting high-risk groups. Findings: Targeting of high-risk groups will result in lower hospitalisations and deaths in most scenarios. Reaching the herd immunity threshold (HIT) with a vaccine of 90% VE against disease and 80% VE against infection requires at least 86ā¢5% total population uptake for R0=4ā¢5 (with high vaccination coverage for 30-49-year-olds) and 98ā¢1% uptake for R0=6. In a two-year open-border scenario with 10 overseas cases daily and 90% total population vaccine uptake (including 0-15 year olds) with the same vaccine, the strategy of targeting high-risk groups is close to achieving HIT, with an estimated 11,400 total hospitalisations (peak 324 active and 36 new daily cases in hospitals), and 1,030 total deaths. Interpretation: Targeting high-risk groups for vaccination will result in fewer hospitalisations and deaths with open borders compared to targeting reduced transmission. With a highly effective vaccine and a high total uptake, opening borders will result in increasing cases, hospitalisations, and deaths. Other public health and social measures will still be required as part of an effective pandemic response. Funding: This project was funded by the Health Research Council [20/1018]. Research in context.
- ItemCulture independent analysis using gnd as a target gene to assess Escherichia coli diversity and community structure.(12/04/2017) Cookson AL; Biggs PJ; Marshall JC; Reynolds A; Collis RM; French NP; Brightwell GCurrent culture methods to investigate changes in Escherichia coli community structure are often slow and laborious. Genes such as gnd (6-phosphogluconate dehydrogenase) have a highly variable nucleotide sequence and may provide a target for E. coli microbiome analysis using culture-independent methods. Metabarcoded PCR primers were used to generate separate libraries from calf faecal samples for high throughput sequencing. Although a total of 348 separate gnd sequence types (gSTs) were identified, 188 were likely to be due to sequencing errors. Of the remaining 160 gSTs, 92 did not match those in a database of 319 separate gnd sequences. 'Animal' was the main determinant of E. coli diversity with limited impact of sample type or DNA extraction method on intra-host E. coli community variation from faeces and recto-anal mucosal swab samples. This culture-independent study has addressed the difficulties of quantifying bacterial intra-species diversity and revealed that, whilst individual animals may harbour >50 separate E. coli strains, communities are dominated by <10 strains alongside a large pool of subdominant strains present at low abundances. This method will be useful for characterising the diversity and population structure of E. coli in experimental studies designed to assess the impact of interventions on the gut microbiome.
- ItemEmerging advances in biosecurity to underpin human, animal, plant, and ecosystem health.(Elsevier B.V., 2023-09-15) Hulme PE; Beggs JR; Binny RN; Bray JP; Cogger N; Dhami MK; Finlay-Smits SC; French NP; Grant A; Hewitt CL; Jones EE; Lester PJ; Lockhart PJOne Biosecurity is an interdisciplinary approach to policy and research that builds on the interconnections between human, animal, plant, and ecosystem health to effectively prevent and mitigate the impacts of invasive alien species. To support this approach requires that key cross-sectoral research innovations be identified and prioritized. Following an interdisciplinary horizon scan for emerging research that underpins One Biosecurity, four major interlinked advances were identified: implementation of new surveillance technologies adopting state-of-the-art sensors connected to the Internet of Things, deployable handheld molecular and genomic tracing tools, the incorporation of wellbeing and diverse human values into biosecurity decision-making, and sophisticated socio-environmental models and data capture. The relevance and applicability of these innovations to address threats from pathogens, pests, and weeds in both terrestrial and aquatic ecosystems emphasize the opportunity to build critical mass around interdisciplinary teams at a global scale that can rapidly advance science solutions targeting biosecurity threats.
- ItemExtended-spectrum Ī²-lactamase- and AmpC Ī²-lactamase-producing Enterobacterales associated with urinary tract infections in the New Zealand community: a case-control study(Elsevier Ltd on behalf of International Society for Infectious Diseases, 2023-03) Toombs-Ruane LJ; Marshall JC; Benschop J; DrinkoviÄ D; Midwinter AC; Biggs PJ; Grange Z; Baker MG; Douwes J; Roberts MG; French NP; Burgess SAOBJECTIVES: To assess whether having a pet in the home is a risk factor for community-acquired urinary tract infections associated with extended-spectrum Ī²-lactamase (ESBL)- or AmpC Ī²-lactamase (ACBL)- producing Enterobacterales. METHODS: An unmatched case-control study was conducted between August 2015 and September 2017. Cases (n = 141) were people with community-acquired urinary tract infection (UTI) caused by ESBL- or ACBL-producing Enterobacterales. Controls (n = 525) were recruited from the community. A telephone questionnaire on pet ownership and other factors was administered, and associations were assessed using logistic regression. RESULTS: Pet ownership was not associated with ESBL- or ACBL-producing Enterobacterales-related human UTIs. A positive association was observed for recent antimicrobial treatment, travel to Asia in the previous year, and a doctor's visit in the last 6 months. Among isolates with an ESBL-/ACBL-producing phenotype, 126/134 (94%) were Escherichia coli, with sequence type 131 being the most common (47/126). CONCLUSIONS: Companion animals in the home were not found to be associated with ESBL- or ACBL-producing Enterobacterales-related community-acquired UTIs in New Zealand. Risk factors included overseas travel, recent antibiotic use, and doctor visits.
- ItemGenomic adaptations of Campylobacter jejuni to long-term human colonization(BioMed Central Ltd, 2021-12-10) Bloomfield SJ; Midwinter AC; Biggs PJ; French NP; Marshall JC; Hayman DTS; Carter PE; Mather AE; Fayaz A; Thornley C; Kelly DJ; Benschop JBACKGROUND: Campylobacter is a genus of bacteria that has been isolated from the gastrointestinal tract of humans and animals, and the environments they inhabit around the world. Campylobacter adapt to new environments by changes in their gene content and expression, but little is known about how they adapt to long-term human colonization. In this study, the genomes of 31 isolates from a New Zealand patient and 22 isolates from a United Kingdom patient belonging to Campylobacter jejuni sequence type 45 (ST45) were compared with 209 ST45 genomes from other sources to identify the mechanisms by which Campylobacter adapts to long-term human colonization. In addition, the New Zealand patient had their microbiota investigated using 16S rRNA metabarcoding, and their level of inflammation and immunosuppression analyzed using biochemical tests, to determine how Campylobacter adapts to a changing gastrointestinal tract. RESULTS: There was some evidence that long-term colonization led to genome degradation, but more evidence that Campylobacter adapted through the accumulation of non-synonymous single nucleotide polymorphisms (SNPs) and frameshifts in genes involved in cell motility, signal transduction and the major outer membrane protein (MOMP). The New Zealand patient also displayed considerable variation in their microbiome, inflammation and immunosuppression over five months, and the Campylobacter collected from this patient could be divided into two subpopulations, the proportion of which correlated with the amount of gastrointestinal inflammation. CONCLUSIONS: This study demonstrates how genomics, phylogenetics, 16S rRNA metabarcoding and biochemical markers can provide insight into how Campylobacter adapts to changing environments within human hosts. This study also demonstrates that long-term human colonization selects for changes in Campylobacter genes involved in cell motility, signal transduction and the MOMP; and that genetically distinct subpopulations of Campylobacter evolve to adapt to the changing gastrointestinal environment.
- ItemGenomic Analysis of Salmonella enterica Serovar Typhimurium DT160 Associated with a 14-Year Outbreak, New Zealand, 1998-2012.(2017-06) Bloomfield SJ; Benschop J; Biggs PJ; Marshall JC; Hayman DTS; Carter PE; Midwinter AC; Mather AE; French NPDuring 1998-2012, an extended outbreak of Salmonella enterica serovar Typhimurium definitive type 160 (DT160) affected >3,000 humans and killed wild birds in New Zealand. However, the relationship between DT160 within these 2 host groups and the origin of the outbreak are unknown. Whole-genome sequencing was used to compare 109 Salmonella Typhimurium DT160 isolates from sources throughout New Zealand. We provide evidence that DT160 was introduced into New Zealand around 1997 and rapidly propagated throughout the country, becoming more genetically diverse over time. The genetic heterogeneity was evenly distributed across multiple predicted functional protein groups, and we found no evidence of host group differentiation between isolates collected from human, poultry, bovid, and wild bird sources, indicating ongoing transmission between these host groups. Our findings demonstrate how a comparative genomic approach can be used to gain insight into outbreaks, disease transmission, and the evolution of a multihost pathogen after a probable point-source introduction.
- ItemHome range overlaps of the brushtail possum (Trichosurus vulpecula): implications for disease transmission(Springer Verlag, 2024-08-01) Tobajas J; Richardson KS; French NP; Buddle B; Jewell C; Tompkins DM; Rouco CUnderstanding how bovine tuberculosis (TB) is maintained in wildlife reservoirs is critical for the management of this disease impacting cattle in many countries. For the primary wildlife reservoir of the disease in New Zealand, the brushtail possum (Trichosurus vulpecula), transmission of this contagious bacterial disease among possums is often assumed to be linked to home range overlap. Identifying drivers of possum home range, and home range overlap between individuals, is thus important for informing wildlife reservoir TB management in New Zealand. We monitored four sub-populations of free-living possums in New Zealand native forests during 10 consecutive months using live trapping, to give the first direct insight into how the frequency and area of overlaps alters with density, sex and age. A total of 832 individuals were captured (average 9.3, range from 1 to 40 captures per animal with a median value of 7) and 35,820 home range overlaps were recorded. Both the number and area of overlaps were significantly associated with age class, with 66.6% of overlaps occurring between adults, 30% between adults and juveniles, and only 3.4% between juveniles. Overall, adult males showed significantly higher numbers of overlaps than expected, while adult and juvenile females showed significantly lower numbers of overlaps than expected and no differences were observed in juvenile males. In addition, males exhibited more and larger overlaps than females. The number and size of overlaps per individual decreased with increasing local population density. Understanding shared areas of activity among individuals can provide insights into the interactions occurring and potential pathways for diseases transmitted by contact such as TB. These results can inform to develop effective strategies for the control of diseases carried and dispersed by possums.
- ItemLost in the Forest(Cold Spring Harbor Laboratory, 2022) Smith HL; Biggs PJ; French NP; Smith ANH; Marshall JCTo date, there remains no satisfactory solution for absent levels in random forest models. Absent levels are levels of a predictor variable encountered during prediction for which no explicit rule exists. Imposing an order on nominal predictors allows absent levels to be integrated and used for prediction. The ordering of predictors has traditionally been via class probabilities with absent levels designated the lowest order. Using a combination of simulated data and pathogen source-attribution models using whole-genome sequencing data, we examine how the method of ordering predictors with absent levels can (i) systematically bias a model, and (ii) affect the out-of-bag error rate. We show that the traditional approach is systematically biased and underestimates out-of-bag error rates, and that this bias is resolved by ordering absent levels according to the a priori hypothesis of equal class probability. We present a novel method of ordering predictors via principal coordinates analysis (PCO) which capitalizes on the similarity between pairs of predictor levels. Absent levels are designated an order according to their similarity to each of the other levels in the training data. We show that the PCO method performs at least as well as the traditional approach of ordering and is not biased.
- ItemLost in the Forest: Encoding categorical variables and the absent levels problem(Springer Nature, 2024-04-10) Smith HL; Biggs PJ; French NP; Smith ANH; Marshall JC; Gama JLevels of a predictor variable that are absent when a classification tree is grown can not be subject to an explicit splitting rule. This is an issue if these absent levels are present in a new observation for prediction. To date, there remains no satisfactory solution for absent levels in random forest models. Unlike missing data, absent levels are fully observed and known. Ordinal encoding of predictors allows absent levels to be integrated and used for prediction. Using a case study on source attribution of Campylobacter species using whole genome sequencing (WGS) data as predictors, we examine how target-agnostic versus target-based encoding of predictor variables with absent levels affects the accuracy of random forest models. We show that a target-based encoding approach using class probabilities, with absent levels designated the highest rank, is systematically biased, and that this bias is resolved by encoding absent levels according to the a priori hypothesis of equal class probability. We present a novel method of ordinal encoding predictors via principal coordinates analysis (PCO) which capitalizes on the similarity between pairs of predictor levels. Absent levels are encoded according to their similarity to each of the other levels in the training data. We show that the PCO-encoding method performs at least as well as the target-based approach and is not biased.
- ItemRisk factors for campylobacteriosis in Australia: outcomes of a 2018-2019 case-control study(BioMed Central Ltd, 2022-12) Cribb DM; Varrone L; Wallace RL; McLure AT; Smith JJ; Stafford RJ; Bulach DM; Selvey LA; Firestone SM; French NP; Valcanis M; Fearnley EJ; Sloan-Gardner TS; Graham T; Glass K; Kirk MDBACKGROUND: We aimed to identify risk factors for sporadic campylobacteriosis in Australia, and to compare these for Campylobacter jejuni and Campylobacter coli infections. METHODS: In a multi-jurisdictional case-control study, we recruited culture-confirmed cases of campylobacteriosis reported to state and territory health departments from February 2018 through October 2019. We recruited controls from notified influenza cases in the previous 12 months that were frequency matched to cases by age group, sex, and location. Campylobacter isolates were confirmed to species level by public health laboratories using molecular methods. We conducted backward stepwise multivariable logistic regression to identify significant risk factors. RESULTS: We recruited 571 cases of campylobacteriosis (422 C. jejuni and 84 C. coli) and 586 controls. Important risk factors for campylobacteriosis included eating undercooked chicken (adjusted odds ratio [aOR] 70, 95% CI 13-1296) or cooked chicken (aOR 1.7, 95% CI 1.1-2.8), owning a pet dog agedā<ā6 months (aOR 6.4, 95% CI 3.4-12), and the regular use of proton-pump inhibitors in the 4 weeks prior to illness (aOR 2.8, 95% CI 1.9-4.3). Risk factors remained similar when analysed specifically for C. jejuni infection. Unique risks for C. coli infection included eating chicken pĆ¢tĆ© (aOR 6.1, 95% CI 1.5-25) and delicatessen meats (aOR 1.8, 95% CI 1.0-3.3). Eating any chicken carried a high population attributable fraction for campylobacteriosis of 42% (95% CI 13-68), while the attributable fraction for proton-pump inhibitors was 13% (95% CI 8.3-18) and owning a pet dog agedā<ā6 months was 9.6% (95% CI 6.5-13). The population attributable fractions for these variables were similar when analysed by campylobacter species. Eating delicatessen meats was attributed to 31% (95% CI 0.0-54) of cases for C. coli and eating chicken pĆ¢tĆ© was attributed to 6.0% (95% CI 0.0-11). CONCLUSIONS: The main risk factor for campylobacteriosis in Australia is consumption of chicken meat. However, contact with young pet dogs may also be an important source of infection. Proton-pump inhibitors are likely to increase vulnerability to infection.
- ItemSensitivity of Reverse Transcription Polymerase Chain Reaction Tests for Severe Acute Respiratory Syndrome Coronavirus 2 Through Time(Oxford University Press on behalf of Infectious Diseases Society of America, 2023-01-01) Binny RN; Priest P; French NP; Parry M; Lustig A; Hendy SC; Maclaren OJ; Ridings KM; Steyn N; Vattiato G; Plank MJBACKGROUND: Reverse transcription polymerase chain reaction (RT-PCR) tests are the gold standard for detecting recent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Reverse transcription PCR sensitivity varies over the course of an individual's infection, related to changes in viral load. Differences in testing methods, and individual-level variables such as age, may also affect sensitivity. METHODS: Using data from New Zealand, we estimate the time-varying sensitivity of SARS-CoV-2 RT-PCR under varying temporal, biological, and demographic factors. RESULTS: Sensitivity peaks 4-5 days postinfection at 92.7% (91.4%-94.0%) and remains over 88% between 5 and 14 days postinfection. After the peak, sensitivity declined more rapidly in vaccinated cases compared with unvaccinated, females compared with males, those aged under 40 compared with over 40s, and Pacific peoples compared with other ethnicities. CONCLUSIONS: Reverse transcription PCR remains a sensitive technique and has been an effective tool in New Zealand's border and postborder measures to control coronavirus disease 2019. Our results inform model parameters and decisions concerning routine testing frequency.
- ItemSpread of Nontyphoidal Salmonella in the Beef Supply Chain in Northern Tanzania: Sensitivity in a Probabilistic Model Integrating Microbiological Data and Data from Stakeholder Interviews(Wiley Periodicals LLC on behalf of Society for Risk Analysis, 2022-05) Zadoks RN; Barker GC; Benschop J; Allan KJ; Chaters G; Cleaveland S; Crump JA; Davis MA; Mmbaga BT; Prinsen G; Thomas KM; Waldman L; French NPEast Africa is a hotspot for foodborne diseases, including infection by nontyphoidal Salmonella (NTS), a zoonotic pathogen that may originate from livestock. Urbanization and increased demand for animal protein drive intensification of livestock production and food processing, creating risks and opportunities for food safety. We built a probabilistic mathematical model, informed by prior beliefs and dedicated stakeholder interviews and microbiological research, to describe sources and prevalence of NTS along the beef supply chain in Moshi, Tanzania. The supply chain was conceptualized using a bow tie model, with terminal livestock markets as pinch point, and a forked pathway postmarket to compare traditional and emerging supply chains. NTS was detected in 36 (7.7%) of 467 samples throughout the supply chain. After combining prior belief and observational data, marginal estimates of true NTS prevalence were 4% in feces of cattle entering the beef supply and 20% in raw meat at butcheries. Based on our model and sensitivity analyses, true NTS prevalence was not significantly different between supply chains. Environmental contamination, associated with butchers and vendors, was estimated to be the most likely source of NTS in meat for human consumption. The model provides a framework for assessing the origin and propagation of NTS along meat supply chains. It can be used to inform decision making when economic factors cause changes in beef production and consumption, such as where to target interventions to reduce risks to consumers. Through sensitivity and value of information analyses, the model also helps to prioritize investment in additional research.
- ItemSteps towards operationalizing One Health approaches.(Elsevier B.V., 2024-04-27) Pepin KM; Carlisle K; Anderson D; Baker MG; Chipman RB; Benschop J; French NP; Greenhalgh S; McDougall S; Muellner P; Murphy E; O'Neale DRJ; Plank MJ; Hayman DTSOne Health recognizes the health of humans, agriculture, wildlife, and the environment are interrelated. The concept has been embraced by international health and environmental authorities such as WHO, WOAH, FAO, and UNEP, but One Health approaches have been more practiced by researchers than national or international authorities. To identify priorities for operationalizing One Health beyond research contexts, we conducted 41 semi-structured interviews with professionals across One Health sectors (public health, environment, agriculture, wildlife) and institutional contexts, who focus on national-scale and international applications. We identify important challenges, solutions, and priorities for delivering the One Health agenda through government action. Participants said One Health has made progress with motivating stakeholders to attempt One Health approaches, but achieving implementation needs more guidance (action plans for how to leverage or change current government infrastructure to accommodate cross-sector policy and strategic mission planning) and facilitation (behavioral change, dedicated personnel, new training model).
- ItemThe Genetic Relatedness and Antimicrobial Resistance Patterns of Mastitis-Causing Staphylococcus aureus Strains Isolated from New Zealand Dairy Cattle(MDPI (Basel, Switzerland), 2021-11-22) Greening SS; Zhang J; Midwinter AC; Wilkinson DA; McDougall S; Gates MC; French NP; Butaye PStaphylococcus aureus is one of the leading causes of bovine mastitis worldwide and is a common indication for use of antimicrobials on dairy farms. This study aims to investigate the association between on-farm antimicrobial usage and the antimicrobial resistance (AMR) profiles of mastitis-causing S. aureus. Whole-genome sequencing was performed on 57 S. aureus isolates derived from cows with either clinical or subclinical mastitis from 17 dairy herds in New Zealand. The genetic relatedness between isolates was examined using the core single nucleotide polymorphism alignment whilst AMR and virulence genes were identified in-silico. The association between gene presence-absence and sequence type (ST), antimicrobial susceptibility and dry cow therapy treatment was investigated using Scoary. Altogether, eight STs were identified with 61.4% (35/57) belonging to ST-1. Furthermore, 14 AMR-associated genes and 76 virulence-associated genes were identified, with little genetic diversity between isolates belonging to the same ST. Several genes including merR1 which is thought to play a role in ciprofloxacin-resistance were found to be significantly overrepresented in isolates sampled from herds using ampicillin/cloxacillin dry cow therapy. Overall, the presence of resistance genes remains low and current antimicrobial usage patterns do not appear to be driving AMR in S. aureus associated with bovine mastitis.
- ItemTransmission dynamics of an antimicrobial resistant Campylobacter jejuni lineage in New Zealandās commercial poultry network(Elsevier B.V, 2021-12) Greening SS; Zhang J; Midwinter AC; Wilkinson DA; Fayaz A; Williamson DA; Anderson MJ; Gates MC; French NPUnderstanding the relative contribution of different between-farm transmission pathways is essential in guiding recommendations for mitigating disease spread. This study investigated the association between contact pathways linking poultry farms in New Zealand and the genetic relatedness of antimicrobial resistant Campylobacter jejuni Sequence Type 6964 (ST-6964), with the aim of identifying the most likely contact pathways that contributed to its rapid spread across the industry. Whole-genome sequencing was performed on 167C. jejuni ST-6964 isolates sampled from across 30 New Zealand commercial poultry enterprises. The genetic relatedness between isolates was determined using whole genome multilocus sequence typing (wgMLST). Permutational multivariate analysis of variance and distance-based linear models were used to explore the strength of the relationship between pairwise genetic associations among the C. jejuni isolates and each of several pairwise distance matrices, indicating either the geographical distance between farms or the network distance of transportation vehicles. Overall, a significant association was found between the pairwise genetic relatedness of the C. jejuni isolates and the parent company, the road distance and the network distance of transporting feed vehicles. This result suggests that the transportation of feed within the commercial poultry industry as well as other local contacts between flocks, such as the movements of personnel, may have played a significant role in the spread of C. jejuni. However, further information on the historical contact patterns between farms is needed to fully characterise the risk of these pathways and to understand how they could be targeted to reduce the spread of C. jejuni.
- ItemTransmission Dynamics of Shiga Toxin-Producing Escherichia coli in New Zealand Cattle from Farm to Slaughter.(American Society for Microbiology, 2021-05-11) Browne AS; Midwinter AC; Withers H; Cookson AL; Biggs PJ; Marshall JC; Benschop J; Hathaway S; Rogers L; Nisa S; Hranac CR; Winkleman T; French NPCattle are asymptomatic carriers of Shiga toxin-producing Escherichiacoli (STEC) strains that can cause serious illness or death in humans. In New Zealand, contact with cattle feces and living near cattle populations are known risk factors for human STEC infection. Contamination of fresh meat with STEC strains also leads to the potential for rejection of consignments by importing countries. We used a combination of PCR/matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) and whole-genome sequencing (WGS) to evaluate the presence and transmission of STEC on farms and in processing plants to better understand the potential pathways for human exposure and thus mitigate risk. Animal and environmental samples (nā=ā2,580) were collected from six farms and three meat processing plants in New Zealand during multiple sampling sessions in spring of 2015 and 2016. PCR/MALDI-TOF analysis revealed that 6.2% were positive for "Top 7" STEC. Top 7 STEC strains were identified in all sample sources (nā=ā17) tested. A marked increase in Top 7 STEC prevalence was observed between calf hides on farm (6.3% prevalence) and calf hides at processing plants (25.1% prevalence). Whole-genome sequencing was performed on Top 7 STEC bacterial isolates (nā=ā40). Analysis of STEC O26 (nā=ā25 isolates) revealed relatively low genetic diversity on individual farms, consistent with the presence of a resident strain disseminated within the farm environment. Public health efforts should focus on minimizing human contact with fecal material on farms and during handling, transport, and slaughter of calves. Meat processing plants should focus on minimizing cross-contamination between the hides of calves in a cohort during transport, lairage, and slaughter. IMPORTANCE Cattle are asymptomatic carriers of Shiga toxin-producing E. coli (STEC) strains, which can cause serious illness or death in humans. Contact with cattle feces and living near cattle are known risk factors for human STEC infection. This study evaluated STEC carriage in young calves and the farm environment with an in-depth evaluation of six farms and three meat processing plants over 2 years. An advanced molecular detection method and whole-genome sequencing were used to provide a detailed evaluation of the transmission of STEC both within and between farms. The study revealed widespread STEC contamination within the farm environment, but no evidence of recent spread between farms. Contamination of young dairy calf hides increased following transport and holding at meat processing plants. The elimination of STEC in farm environments may be very difficult given the multiple transmission routes; interventions should be targeted at decreasing fecal contamination of calf hides during transport, lairage, and processing.
- ItemUncovering the genetic diversity of Giardia intestinalis in isolates from outbreaks in New Zealand(BioMed Central Ltd, 2022-12) Ogbuigwe P; Biggs PJ; Garcia-Ramirez JC; Knox MA; Pita A; Velathanthiri N; French NP; Hayman DTSBACKGROUND: Giardia intestinalis is one of the most common causes of diarrhoea worldwide. Molecular techniques have greatly improved our understanding of the taxonomy and epidemiology of this parasite. Co-infection with mixed (sub-) assemblages has been reported, however, Sanger sequencing is sometimes unable to identify shared subtypes between samples involved in the same epidemiologically linked event, due to samples showing multiple dominant subtypes within the same outbreak. Here, we aimed to use a metabarcoding approach to uncover the genetic diversity within samples from sporadic and outbreak cases of giardiasis to characterise the subtype diversity, and determine if there are common sequences shared by epidemiologically linked cases that are missed by Sanger sequencing. METHODS: We built a database with 1109 unique glutamate dehydrogenase (gdh) locus sequences covering most of the assemblages of G. intestinalis and used gdh metabarcoding to analyse 16 samples from sporadic and outbreak cases of giardiasis that occurred in New Zealand between 2010 and 2018. RESULTS: There is considerable diversity of subtypes of G. intestinalis present in each sample. The utilisation of metabarcoding enabled the identification of shared subtypes between samples from the same outbreak. Multiple variants were identified in 13 of 16 samples, with Assemblage B variants most common, and Assemblages E and A present in mixed infections. CONCLUSIONS: This study showed that G. intestinalis infections in humans are frequently mixed, with multiple subtypes present in each host. Shared sequences among epidemiologically linked cases not identified through Sanger sequencing were detected. Considering the variation in symptoms observed in cases of giardiasis, and the potential link between symptoms and (sub-) assemblages, the frequency of mixed infections could have implications for our understanding of host-pathogen interactions.