Research Letters in the Information and Mathematical Sciences

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/4332

Research Letters welcomes papers from staff and graduate students at Massey University in the areas of: Computer Science, Information Science, Mathematics, Statistics and the Physical and Engineering Sciences. Research letters is a preprint series that accepts articles of completed research work, technical reports, or preliminary results from ongoing research. After editing, articles are published online and can be referenced, or handed out at conferences. Copyright remains with the authors and the articles can be used as preprints to academic journal publications or handed out at conferences. Editors Dr Elena Calude Dr Napoleon Reyes The guidelines for writing a manuscript can be accessed here.

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    A reconfigurable hybrid intelligent system for robot navigation
    (Massey University, 2011) Reyes, N.H.; Barczak, A.L.C.; Fatahillah; Susnjak, T.
    Soft computing has come of age to o er us a wide array of powerful and e cient algorithms that independently matured and in uenced our approach to solving problems in robotics, search and optimisation. The steady progress of technology, however, induced a ux of new real-world applications that demand for more robust and adaptive computational paradigms, tailored speci cally for the problem domain. This gave rise to hybrid intelligent systems, and to name a few of the successful ones, we have the integration of fuzzy logic, genetic algorithms and neural networks. As noted in the literature, they are signi cantly more powerful than individual algorithms, and therefore have been the subject of research activities in the past decades. There are problems, however, that have not succumbed to traditional hybridisation approaches, pushing the limits of current intelligent systems design, questioning their solutions of a guarantee of optimality, real-time execution and self-calibration. This work presents an improved hybrid solution to the problem of integrated dynamic target pursuit and obstacle avoidance, comprising of a cascade of fuzzy logic systems, genetic algorithm, the A* search algorithm and the Voronoi diagram generation algorithm.
  • Item
    Performance evaluation of a distributed integrative architecture for robotics
    (Massey University, 2007) Kloss, Guy K.
    The eld of robotics employs a vast amount of coupled sub-systems. These need to interact cooperatively and concurrently in order to yield the desired results. Some hybrid algorithms also require intensive cooperative interactions internally. The architecture proposed lends it- self amenable to problem domains that require rigorous calculations that are usually impeded by the capacity of a single machine, and incompatibility issues between software computing elements. Implementations are abstracted away from the physical hardware for ease of de- velopment and competition in simulation leagues. Monolithic developments are complex, and the desire for decoupled architectures arises. Decoupling also lowers the threshold for using distributed and parallel resources. The ability to re-use and re-combine components on de- mand, therefore is essential, while maintaining the necessary degree of interaction. For this reason we propose to build software components on top of a Service Oriented Architecture (SOA) using Web Services. An additional bene t is platform independence regarding both the operating system and the implementation language. The robot soccer platform as well as the associated simulation leagues are the target domain for the development. Furthermore are machine vision and remote process control related portions of the architecture currently in development and testing for industrial environments. We provide numerical data based on the Python frameworks ZSI and SOAPpy undermining the suitability of this approach for the eld of robotics. Response times of signi cantly less than 50 ms even for fully interpreted, dynamic languages provides hard information showing the feasibility of Web Services based SOAs even in time critical robotic applications.