Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item X-linked myotubular myopathy associated with an MTM1 variant in a Maine coon cat(Wiley Periodicals LLC on behalf of American College of Veterinary Internal Medicine, 2022-09-26) Kopke MA; Shelton GD; Lyons LA; Wall MJ; Pemberton S; Gedye KR; Owen R; Guo LT; Buckley RM; Valencia JA; 99 Lives Consortium; Jones BROBJECTIVE: Describe the clinical course and diagnostic and genetic findings in a cat with X-linked myotubular myopathy. CASE SUMMARY: A 7-month-old male Maine coon was evaluated for progressively worsening gait abnormalities and generalized weakness. Neurolocalization was to the neuromuscular system. Genetic testing for spinal muscular atrophy (LIX1) was negative. Given the progressive nature and suspected poor long-term prognosis, the owners elected euthanasia. Histopathology of skeletal muscle obtained post-mortem disclosed numerous rounded atrophic or hypotrophic fibers with internal nuclei or central basophilic staining. Using oxidative reactions mediated by cytochrome C oxidase and succinic dehydrogenase, scattered myofibers were observed to have central dark staining structures and a "ring-like" appearance. Given the cat's age and clinical history, a congenital myopathy was considered most likely, with the central nuclei and "ring-like" changes consistent with either centronuclear or myotubular myopathy. Whole genome sequencing identified an underlying missense variant in myotubularin 1 (MTM1), a known candidate gene for X-linked myotubular myopathy. NEW OR UNIQUE INFORMATION PROVIDED: This case is the first report of X-linked myotubular myopathy in a cat with an MTM1 missense mutation. Maine coon cat breeders may consider screening for this variant to prevent production of affected cats and to eradicate the variant from the breeding population.Item Multi-omic analyses in Abyssinian cats with primary renal amyloid deposits(Springer Nature Limited, 2021-04-16) Genova F; Nonnis S; Maffioli E; Tedeschi G; Strillacci MG; Carisetti M; Sironi G; Cupaioli FA; Di Nanni N; Mezzelani A; Mosca E; Helps CR; Leegwater PAJ; Dorso L; 99 Lives Consortium; Longeri MThe amyloidoses constitute a group of diseases occurring in humans and animals that are characterized by abnormal deposits of aggregated proteins in organs, affecting their structure and function. In the Abyssinian cat breed, a familial form of renal amyloidosis has been described. In this study, multi-omics analyses were applied and integrated to explore some aspects of the unknown pathogenetic processes in cats. Whole-genome sequences of two affected Abyssinians and 195 controls of other breeds (part of the 99 Lives initiative) were screened to prioritize potential disease-associated variants. Proteome and miRNAome from formalin-fixed paraffin-embedded kidney specimens of fully necropsied Abyssinian cats, three affected and three non-amyloidosis-affected were characterized. While the trigger of the disorder remains unclear, overall, (i) 35,960 genomic variants were detected; (ii) 215 and 56 proteins were identified as exclusive or overexpressed in the affected and control kidneys, respectively; (iii) 60 miRNAs were differentially expressed, 20 of which are newly described. With omics data integration, the general conclusions are: (i) the familial amyloid renal form in Abyssinians is not a simple monogenic trait; (ii) amyloid deposition is not triggered by mutated amyloidogenic proteins but is a mix of proteins codified by wild-type genes; (iii) the form is biochemically classifiable as AA amyloidosis.
