Journal Articles

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 10 of 4580
  • Item
    Networked media and information ocean literacy: a transformative approach for UN ocean decade
    (Springer Nature Limited, 2024-01-10) Gerhardinger LC; Colonese AC; Martini RG; da Silveira I; Zivian A; Herbst DF; Glavovic B; Calvo ST; Christie P
    The United Nations’ Ocean Decade calls for co-designing transformative science, ocean networks, and learning strategies to address ocean health decline and deep-blue social divides in ocean governance. Yet the transformative capacity to advance ocean sustainability pathways shared by the UN Ocean Decade ecosystem of partners is still under-realized in the early stages of this global campaign. This paper explores the conceptual and institutional implications of the combined use of marine learning networks (MLNs) and media and information ocean literacy (MIOL) approaches to strengthen capacities for ocean governance systems’ transformation (leadership, strategies, skills, and actions). We build upon an empirical case study of the self-organized, youth-led Brazilian Future Ocean Panel, applying a regional alternative to such a combined approach (namely Social-Environmental Educommunication) during a four-year transdisciplinary program. We reveal the synergistic benefits of MLNs and MIOL in empowering early-career ocean professionals and fostering their transformative capacity in ocean policymaking. Our findings emphasize the practical implications of these approaches for advancing ocean governance systems transformations in other regions. Insights are shared on MLNs and MIOL applications in the pursuit of transdisciplinary solutions, ocean governance transformation, capacity development, and effective responses to foundational challenges facing the UN Ocean Decade’s global efforts toward sustainability.
  • Item
    Bio-Inspired Energy-Efficient Cluster-Based Routing Protocol for the IoT in Disaster Scenarios.
    (MDPI (Basel, Switzerland), 2024-08-19) Ahmed S; Hossain MA; Chong PHJ; Ray SK; Farhan M; Mahmood K; Jabbar S
    The Internet of Things (IoT) is a promising technology for sensing and monitoring the environment to reduce disaster impact. Energy is one of the major concerns for IoT devices, as sensors used in IoT devices are battery-operated. Thus, it is important to reduce energy consumption, especially during data transmission in disaster-prone situations. Clustering-based communication helps reduce a node's energy decay during data transmission and enhances network lifetime. Many hybrid combination algorithms have been proposed for clustering and routing protocols to improve network lifetime in disaster scenarios. However, the performance of these protocols varies widely based on the underlying network configuration and the optimisation parameters considered. In this research, we used the clustering parameters most relevant to disaster scenarios, such as the node's residual energy, distance to sink, and network coverage. We then proposed the bio-inspired hybrid BOA-PSO algorithm, where the Butterfly Optimisation Algorithm (BOA) is used for clustering and Particle Swarm Optimisation (PSO) is used for the routing protocol. The performance of the proposed algorithm was compared with that of various benchmark protocols: LEACH, DEEC, PSO, PSO-GA, and PSO-HAS. Residual energy, network throughput, and network lifetime were considered performance metrics. The simulation results demonstrate that the proposed algorithm effectively conserves residual energy, achieving more than a 17% improvement for short-range scenarios and a 10% improvement for long-range scenarios. In terms of throughput, the proposed method delivers a 60% performance enhancement compared to LEACH, a 53% enhancement compared to DEEC, and a 37% enhancement compared to PSO. Additionally, the proposed method results in a 60% reduction in packet drops compared to LEACH and DEEC, and a 30% reduction compared to PSO. It increases network lifetime by 10-20% compared to the benchmark algorithms.
  • Item
    Higher socioeconomic deprivation in areas predicts cognitive decline in New Zealanders without cognitive impairment
    (Springer Nature Limited, 2024-11-16) Röhr S; Gibson RH; Alpass FM
    Previous studies identified individual-level socioeconomic factors as key determinants of cognitive health. This study investigated the effect of area-based socioeconomic deprivation on cognitive outcomes in midlife to early late-life New Zealanders without cognitive impairment at baseline. Data stemmed from a subsample of the New Zealand Health, Work and Retirement Study, a cohort study on ageing, who completed face-to-face interviews and were reassessed two years later. Cognitive functioning was measured using Addenbrooke's Cognitive Examination-Revised, adapted for culturally acceptable use in Aotearoa New Zealand. Area-based socioeconomic deprivation was assessed using the New Zealand Deprivation Index (NZDep2006). Linear mixed-effects models analysed the association between area-based socioeconomic deprivation and cognitive outcomes. The analysis included 783 participants without cognitive impairment at baseline (54.7% female, mean age 62.7 years, 25.0% Māori, the Indigenous people of Aotearoa New Zealand). There was an association between higher area-based socioeconomic deprivation and lower cognitive functioning (B = -0.08, 95%CI: -0.15;-0.01; p = .050) and cognitive decline (B = -0.12, 95%CI: -0.20;-0.04, p = .013) over two years, while controlling for covariates. The findings emphasise the importance of considering neighbourhood characteristics and broader socioeconomic factors in strategies aimed at mitigating cognitive health disparities and reducing the impact of dementia in disadvantaged communities.
  • Item
    Genomic diversity of Campylobacter jejuni and Campylobacter coli isolates recovered from human and poultry in Australia and New Zealand, 2017 to 2019.
    (Microbiology Society, 2024-11-05) Cribb DM; Biggs PJ; McLure AT; Wallace RL; French NP; Glass K; Kirk MD
    We used genomic and epidemiological data to assess and compare the population structure and origins of Campylobacter, a major foodborne pathogen, in two neighbouring countries with strong trade and cultural links, similar poultry production systems and frequent movement of people and food products. The most common sequence types (STs) differed between Australia and New Zealand, with many unique to each country. Over half of all STs were represented by a single isolate. Multidrug-resistant (MDR) genotypes were detected in 0.8% of all samples, with no MDR isolates detected in poultry. Quinolone and tetracycline resistant ST6964 was prevalent in New Zealand (10.6% of C. jejuni). Closely related isolates suggested some similar food sources or contacts. We have shown that there is little genetic overlap in human and poultry STs of Campylobacter between the countries, which highlights that this common foodborne pathogen has domestic origins in Australia and New Zealand.
  • Item
    Global warming leads to habitat loss and genetic erosion of alpine biodiversity
    (John Wiley and Sons Ltd, 2023-03-11) Meza-Joya FL; Morgan-Richards M; Koot EM; Trewick SA; Parmakelis A
    Aim Species living on steep environmental gradients are expected to be especially sensitive to global climate change, but little is known about the factors influencing their responses to contemporary warming. Here, we investigate the influence of climate on the biogeography of three alpine species with overlapping ranges. Location Te Waipounamu (South Island) Aotearoa–New Zealand. Taxon Endemic alpine adapted Catantopinae grasshoppers. Methods We used niche modelling to estimate and project the potential niche of three focal species under past and future climate scenarios. Vulnerability assessments were performed using niche factor analyses. Demographic trends and phylogeographic structure were investigated using samples from 15 mountain tops to generate mitochondrial DNA haplotype networks and population genetic statistics. Results Niche models and genetic data suggest suitable habitat for all three alpine species was more widespread and contiguous in the past than today. Demographic analyses indicate in situ survival rather than post-Pleistocene colonisation of current habitat. Population structuring and genetic divergence suggest that mountain uplift during the Pliocene and environmental barriers during Pleistocene glacial and interglacial stages shaped contemporary population structure of each species. Although geographically overlapping, niche analyses suggest these alpine species are not ecologically identical, each showing distinct responses to environmental change, but all will lose intraspecific diversity through population extinction. Main Conclusions Climatic, biological and geophysical factors controlled population structuring of three cold-adapted species during the Pleistocene with a legacy of spatially separate intraspecific lineages. Ecological niche models for each species emphasise distinct combinations of environmental proxies, but all are expected to experience severe habitat reduction during climate warming. Increased global temperatures drive available habitat to higher elevation resulting in population contractions, range shifts, habitat fragmentation, local extinctions and genetic impoverishment. Despite alpine species not being ecologically identical, we predict all mountain biota will lose significant genetic diversity due to global warming.
  • Item
    Heat-Treatments Affect Protease Activities and Peptide Profiles of Ruminants' Milk
    (Frontiers Media S.A., 2021-03-10) Leite JAS; Montoya CA; Loveday SM; Maes E; Mullaney JA; McNabb WC; Roy NC; Abd El-Aty, AM
    Proteases present in milk are heat-sensitive, and their activities increase or decrease depending on the intensity of the thermal treatment applied. The thermal effects on the protease activity are well-known for bovine milk but poorly understood for ovine and caprine milk. This study aimed to determine the non-specific and specific protease activities in casein and whey fractions isolated from raw bovine, ovine, and caprine milk collected in early lactation, and to determine the effects of low-temperature, long-time (63°C for 30 min) and high-temperature, short-time (85°C for 5 min) treatments on protease activities within each milk fraction. The non-specific protease activities in raw and heat-treated milk samples were determined using the substrate azocasein. Plasmin (the main protease in milk) and plasminogen-derived activities were determined using the chromogenic substrate S-2251 (D-Val-Leu-Lys-pNA dihydrochloride). Peptides were characterized using high-resolution liquid chromatography coupled with tandem mass spectrometry. The activity of all native proteases, shown as non-specific proteases, was similar between raw bovine and caprine milk samples, but lower (P < 0.05) than raw ovine milk in the whey fraction. There was no difference (P > 0.05) between the non-specific protease activity of the casein fraction of raw bovine and caprine milk samples; both had higher activity than ovine milk. After 63°C/30 min, the non-specific protease activity decreased (44%; P > 0.05) for the bovine casein fraction only. In contrast, the protease activity of the milk heated at 85°C/5 min changed depending on the species and fraction. For instance, the activity decreased by 49% for ovine whey fraction, but it increased by 68% for ovine casein fraction. Plasmin and plasminogen were in general inactivated (P > 0.05) when all milk fractions were heated at 85°C/5 min. Most of the peptides present in heat-treated milk were derived from β-casein and αS1-casein, and they matched the hydrolysis profile of cathepsin D and plasmin. Identified peptides in ruminant milk samples had purported immunomodulatory and inhibitory functions. These findings indicate that the non-specific protease activity in whey and casein fractions differed between ruminant milk species, and specific thermal treatments could be used to retain better protease activity for all ruminant milk species.
  • Item
    Morphometric analysis of monogenetic volcanoes in the Garrotxa Volcanic Field, Iberian Peninsula
    (Elsevier B V, Amsterdam, 2024-11-15) Pedrazzi D; Kereszturi G; Geyer A; Bolós X; Granell J; Planagumà L; Martí J; Cerda D
    The Garrotxa Volcanic Field is situated in the northeast region of the Iberian Peninsula. It represents the most recent volcanic area within the Catalan Volcanic Zone, which is one of the volcanic provinces of the European Rift System, featuring over 50 dispersed eruptive vents. This study presents a comprehensive morphometric analysis of volcanic edifices, aiming to enhance our understanding of both volcanostratigraphy and the geomorphology of landforms within the Garrotxa Volcanic Field. Our methodology involved extensive fieldwork and detailed analysis of Digital Elevation Models (DEMs) to precisely determine the spatial distribution and morphometric parameters of the best-preserved volcanic structures in the area. The Garrotxa Volcanic Field exhibits an uneven spatial distribution of various volcanic landforms, with approximately 50 % comprising magmatic cones, primarily formed through Strombolian eruptions. The remaining 50 % is evenly divided between magmatic-phreatomagmatic volcanoes and phreatomagmatic tuff rings-maars. The morphometric characteristics of the three genetic types overlap significantly, showing no clear differences, although a few distinctions can sometimes be identified. The Garrotxa Volcanic Field displays a variety of eruption styles: 46 % of the identified eruptive sequences begin with phreatomagmatic activity, while 54 % start with predominantly magmatic explosive activity. Most eruptions show a transition through different phases. Data also indicate that the morphometric variability at the Garrotxa Volcanic Field stems from differences in the properties of pyroclastic sequences, resulting from their diverse eruption styles, as well as pre- and post-eruptive factors. Consequently, the results of the morphometric analysis are deemed insufficient for establishing a reliable chronology for the Garrotxa Volcanic Field
  • Item
    Characterization of two conserved cell death elicitor families from the Dothideomycete fungal pathogens Dothistroma septosporum and Fulvia fulva (syn. Cladosporium fulvum)
    (Frontiers Media S.A., 2022-09-08) Tarallo M; McDougal RL; Chen Z; Wang Y; Bradshaw RE; Mesarich CH; Wang Y
    Dothistroma septosporum (Ds) and Fulvia fulva (Ff; previously called Cladosporium fulvum) are two closely related Dothideomycete fungal species that cause Dothistroma needle blight in pine and leaf mold in tomato, respectively. During host colonization, these pathogens secrete virulence factors termed effectors to promote infection. In the presence of corresponding host immune receptors, however, these effectors activate plant defenses, including a localized cell death response that halts pathogen growth. We identified two apoplastic effector protein families, Ecp20 and Ecp32, which are conserved between the two pathogens. The Ecp20 family has four paralogues in both species, while the Ecp32 family has four paralogues in D. septosporum and five in F. fulva. Both families have members that are highly expressed during host infection. Members of the Ecp20 family have predicted structural similarity to proteins with a β-barrel fold, including the Alt a 1 allergen from Alternaria alternata, while members of the Ecp32 family have predicted structural similarity to proteins with a β-trefoil fold, such as trypsin inhibitors and lectins. Using Agrobacterium tumefaciens-mediated transient transformation assays, each family member was assessed for its ability to trigger cell death in leaves of the non-host species Nicotiana benthamiana and N. tabacum. Using this approach, FfEcp20-2, DsEcp20-3, and FfEcp20-3 from the Ecp20 family, and all members from the Ecp32 family, except for the Ds/FfEcp32-4 pair, triggered cell death in both species. This cell death was dependent on secretion of the effectors to the apoplast. In line with recognition by an extracellular immune receptor, cell death triggered by Ds/FfEcp20-3 and FfEcp32-3 was compromised in N. benthamiana silenced for BAK1 or SOBIR1, which encode extracellular co-receptors involved in transducing defense response signals following apoplastic effector recognition. We then investigated whether DsEcp20-3 and DsEcp20-4 triggered cell death in the host species Pinus radiata by directly infiltrating purified protein into pine needles. Strikingly, as in the non-host species, DsEcp20-3 triggered cell death, while DsEcp20-4 did not. Collectively, our study describes two new candidate effector families with cell death-eliciting activity from D. septosporum and F. fulva and provides evidence that members of these families are recognized by plant immune receptors.