Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    The influence of ripening on the nutrient composition and antioxidant properties of New Zealand damson plums
    (Wiley Periodicals LLC, 2024-03-30) Rashidinejad A; Ahmmed MK
    The current study pioneers a comprehensive exploration into the influence of ripening stages on the nutritional composition and antioxidant attributes of the New Zealand damson plums (Prunus domestica ssp. Insititia). Sampled at early-, mid-, and late-ripening stages from randomly selected plum trees, the investigation unveiled notable significant (p <.05) declines in multiple parameters as ripening progressed. Noteworthy reductions in dry matter (from 21% to 19.33%), stone weight (from 30.23% to 24.30%), total dietary fiber (from 3.15% to 2.5%), energy content (from 280 to 263 kJ/100 g), vitamin D3 (from 1.67 to 1.53 μg/100 g), vitamin A (from 4.2 to 3.87 μg/100 g), and specific minerals (e.g., Ca, Mg, and P) emerged as a hallmark of this progression. Additionally, plums harvested at the advanced ripening stage exhibited heightened moisture content in contrast to their early-stage counterparts. Conversely, ash, protein, carbohydrates, total sugar, and minerals (including K, Na, Zn, and Se) demonstrated no significant alteration (p >.05) across ripening stages. Remarkably, damson plums that were harvested at the end of the ripening stage displayed reduced phenolic content and total antioxidant activity compared to those acquired at the early–mid ripening phase. This research collectively highlights the substantive impact of harvesting time and ripening stage on the nutritional and antioxidant profiles of damson plums cultivated in New Zealand.
  • Item
    Marine Fish-Derived Lysophosphatidylcholine: Properties, Extraction, Quantification, and Brain Health Application
    (MDPI (Basel, Switzerland), 2023-03-30) Ahmmed MK; Hachem M; Ahmmed F; Rashidinejad A; Oz F; Bekhit AA; Carne A; Bekhit AE-DA; Jembrek MJ; Šegota S
    Long-chain omega-3 fatty acids esterified in lysophosphatidylcholine (LPC-omega-3) are the most bioavailable omega-3 fatty acid form and are considered important for brain health. Lysophosphatidylcholine is a hydrolyzed phospholipid that is generated from the action of either phospholipase PLA1 or PLA2. There are two types of LPC; 1-LPC (where the omega-3 fatty acid at the sn-2 position is acylated) and 2-LPC (where the omega-3 fatty acid at the sn-1 position is acylated). The 2-LPC type is more highly bioavailable to the brain than the 1-LPC type. Given the biological and health aspects of LPC types, it is important to understand the structure, properties, extraction, quantification, functional role, and effect of the processing of LPC. This review examines various aspects involved in the extraction, characterization, and quantification of LPC. Further, the effects of processing methods on LPC and the potential biological roles of LPC in health and wellbeing are discussed. DHA-rich-LysoPLs, including LPC, can be enzymatically produced using lipases and phospholipases from wide microbial strains, and the highest yields were obtained by Lipozyme RM-IM®, Lipozyme TL-IM®, and Novozym 435®. Terrestrial-based phospholipids generally contain lower levels of long-chain omega-3 PUFAs, and therefore, they are considered less effective in providing the same health benefits as marine-based LPC. Processing (e.g., thermal, fermentation, and freezing) reduces the PL in fish. LPC containing omega-3 PUFA, mainly DHA (C22:6 omega-3) and eicosapentaenoic acid EPA (C20:5 omega-3) play important role in brain development and neuronal cell growth. Additionally, they have been implicated in supporting treatment programs for depression and Alzheimer's. These activities appear to be facilitated by the acute function of a major facilitator superfamily domain-containing protein 2 (Mfsd2a), expressed in BBB endothelium, as a chief transporter for LPC-DHA uptake to the brain. LPC-based delivery systems also provide the opportunity to improve the properties of some bioactive compounds during storage and absorption. Overall, LPCs have great potential for improving brain health, but their safety and potentially negative effects should also be taken into consideration.