Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 10 of 21
  • Item
    Visible Light Positioning-Based Robot Localization and Navigation
    (MDPI (Basel, Switzerland), 2024-01-01) Chew M-T; Alam F; Noble FK; Legg M; Gupta GS; Pak JM
    Visible light positioning or VLP has been identified as a promising technique for accurate indoor localization utilizing pre-existing lighting infrastructure. Robot navigation is one of the many potential applications of VLP. Recent literature shows a small number of works on robots being controlled by fusing location information acquired via VLP that uses a rolling shutter effect camera as a receiver with other sensor data. This paper, in contrast, reports on the experimental performance of a cartesian robot that was controlled solely by a VLP system using a cheap photodiode-based receiver rigidly attached to the robot’s end-effector. The receiver’s position was computed using an inverse-Lambertian function for ranging followed by multi-lateration. We developed two novel methods to leverage the VLP as an online navigation system to control the robot. The position acquired from the VLP was used by the algorithms to determine the direction the robot needed to move. The developed algorithms guided the end-effector to move from a starting point to target/destination point(s) in a discrete manner, determined by a pre-determined step size. Our experiments consisted of the robot autonomously repeating straight line-, square- and butterfly-shaped paths multiple times. The results show median errors of 27.16 mm and 26.05 mm and 90 percentile errors of 37.04 mm and 47.48 mm, respectively, for the two methods.
  • Item
    Grape yield estimation with a smartphone’s colour and depth cameras using machine learning and computer vision techniques
    (Elsevier, 2023-09-06) Parr B; Legg M; Alam F
    A smartphone with both colour and time of flight depth cameras is used for automated grape yield estimation of Chardonnay grapes. A new technique is developed to automatically identify grape berries in the smartphone's depth maps. This utilises the distortion peaks in the depth map caused by diffused scattering of the light within each grape berry. This technique is then extended to allow unsupervised training of a YOLOv7 model for the detection of grape berries in the smartphone's colour images. A correlation coefficient (R2) of 0.946 was achieved when comparing the count of grape berries observed in RGB images to those accurately identified by YOLO. Additionally, an average precision score of 0.970 was attained. Two techniques are then presented to automatically estimate the size of the grape berries and generate 3D models of grape bunches using both colour and depth information.
  • Item
    Static Hand Gesture Recognition Using Capacitive Sensing and Machine Learning
    (MDPI AG, 24/03/2023) Noble F; Xu M; Alam F
    Automated hand gesture recognition is a key enabler of Human-to-Machine Interfaces (HMIs) and smart living. This paper reports the development and testing of a static hand gesture recognition system using capacitive sensing. Our system consists of a 6×18 array of capacitive sensors that captured five gestures-Palm, Fist, Middle, OK, and Index-of five participants to create a dataset of gesture images. The dataset was used to train Decision Tree, Naïve Bayes, Multi-Layer Perceptron (MLP) neural network, and Convolutional Neural Network (CNN) classifiers. Each classifier was trained five times; each time, the classifier was trained using four different participants' gestures and tested with one different participant's gestures. The MLP classifier performed the best, achieving an average accuracy of 96.87% and an average F1 score of 92.16%. This demonstrates that the proposed system can accurately recognize hand gestures and that capacitive sensing is a viable method for implementing a non-contact, static hand gesture recognition system.
  • Item
    Accurate Ultrasound Indoor Localization Using Spring-Relaxation Technique
    (MDPI (Basel, Switzerland), 2021-06) Chew MT; Alam F; Legg M; Sen Gupta G
    This paper reports on the development of an ultrasonic sensing-based active localization system. The system employs an ultrasonic array to transmit chirp signals and time-of-flight measurement for ranging. The position of the receiver is estimated iteratively using the spring-relaxation technique. A median and 90-percentile error of 12.4 and 21.7 mm, respectively, were obtained for measurements at 625 positions within a 1.2 × 1.2 m area testbed. The spring-relaxation technique outperforms the widely adopted linear least square-based lateration technique while using the same ranging data. The performance of the system is benchmarked against that of visible light positioning using the same platform setup. The reported results show the ultrasonic system to be more accurate when compared with the visible light positioning system, which achieved median and 90-percentile errors of 33.7 and 58.6 mm, respectively.
  • Item
    Multi-Layer Blockchain-Based Security Architecture for Internet of Things
    (MDPI (Basel, Switzerland), 2021-02) Pajooh HH; Rashid M; Alam F; Demidenko S
    The proliferation of smart devices in the Internet of Things (IoT) networks creates significant security challenges for the communications between such devices. Blockchain is a decentralized and distributed technology that can potentially tackle the security problems within the 5G-enabled IoT networks. This paper proposes a Multi layer Blockchain Security model to protect IoT networks while simplifying the implementation. The concept of clustering is utilized in order to facilitate the multi-layer architecture. The K-unknown clusters are defined within the IoT network by applying techniques that utillize a hybrid Evolutionary Computation Algorithm while using Simulated Annealing and Genetic Algorithms. The chosen cluster heads are responsible for local authentication and authorization. Local private blockchain implementation facilitates communications between the cluster heads and relevant base stations. Such a blockchain enhances credibility assurance and security while also providing a network authentication mechanism. The open-source Hyperledger Fabric Blockchain platform is deployed for the proposed model development. Base stations adopt a global blockchain approach to communicate with each other securely. The simulation results demonstrate that the proposed clustering algorithm performs well when compared to the earlier reported approaches. The proposed lightweight blockchain model is also shown to be better suited to balance network latency and throughput as compared to a traditional global blockchain.
  • Item
    Occluded Grape Cluster Detection and Vine Canopy Visualisation Using an Ultrasonic Phased Array
    (MDPI (Basel, Switzerland), 20/03/2021) Parr B; Legg M; Bradley S; Alam F
    Grape yield estimation has traditionally been performed using manual techniques. However, these tend to be labour intensive and can be inaccurate. Computer vision techniques have therefore been developed for automated grape yield estimation. However, errors occur when grapes are occluded by leaves, other bunches, etc. Synthetic aperture radar has been investigated to allow imaging through leaves to detect occluded grapes. However, such equipment can be expensive. This paper investigates the potential for using ultrasound to image through leaves and identify occluded grapes. A highly directional low frequency ultrasonic array composed of ultrasonic air-coupled transducers and microphones is used to image grapes through leaves. A fan is used to help differentiate between ultrasonic reflections from grapes and leaves. Improved resolution and detail are achieved with chirp excitation waveforms and near-field focusing of the array. The overestimation in grape volume estimation using ultrasound reduced from 222% to 112% compared to the 3D scan obtained using photogrammetry or from 56% to 2.5% compared to a convex hull of this 3D scan. This also has the added benefit of producing more accurate canopy volume estimations which are important for common precision viticulture management processes such as variable rate applications.
  • Item
    Device-Free Localization Using Privacy-Preserving Infrared Signatures Acquired from Thermopiles and Machine Learning
    (IEEE, 4/06/2021) Faulkner N; Alam F; Legg M; Demidenko S
    The development of an accurate passive localization system utilizing thermopile sensing and artificial intelligence is discussed in this paper. Several machine learning techniques are explored to create robust angular and radius coordinate models for a localization target with respect to thermopile sensors. These models are leveraged to develop a reconfigurable passive localization system that can use a varying number of thermopiles without the need for retraining. The proposed robust system achieves high localization accuracy (with the median error between 0.13 m and 0.2 m) while being trained using a single human subject and tested against multiple other subjects. It is shown that the proposed system does not experience any significant performance deterioration when localizing a subject at different ambient temperatures or with different configurations of the thermopile sensors placement.
  • Item
    A Machine Learning Approach to Enhance the Performance of D2D-Enabled Clustered Networks
    (IEEE, 20/01/2021) Aslam S; Alam F; Hasan SF; Rashid MA
    Clustering has been suggested as an effective technique to enhance the performance of multicasting networks. Typically, a cluster head is selected to broadcast the cached content to its cluster members utilizing Device-to-Device (D2D) communication. However, some users can attain better performance by being connected with the Evolved Node B (eNB) rather than being in the clusters. In this article, we apply machine learning algorithms, namely Support Vector Machine, Random Forest, and Deep Neural Network to identify the users that should be serviced by the eNB. We therefore propose a mixed-mode content distribution scheme where the cluster heads and eNB service the two segregated groups of users to improve the performance of existing clustering schemes. A D2D-enabled multicasting scenario has been set up to perform a comprehensive simulation study that demonstrates that by utilizing the mixed-mode scheme, the performance of individual users, as well as the whole network, improve significantly in terms of throughput, energy consumption, and fairness. This study also demonstrates the trade-off between eNB loading and performance improvement for various parameters.
  • Item
    SpringLoc: A device-free localization technique for indoor positioning and tracking using adaptive RSSI spring relaxation
    (Institute of Electrical and Electronics Engineers (IEEE), 5/05/2019) Konings D; Alam F; Noble F; Lai E
    Device-free localization (DFL) algorithms using the received signal strength indicator (RSSI) metrics have become a popular research focus in recent years as they allow for location-based service using commercial-off-the-shelf (COTS) wireless equipment. However, most existing DFL approaches have limited applicability in realistic smart home environments as they typically require extensive offline calibration, large node densities, or use technology that is not readily available in commercial smart homes. In this paper, we introduce SpringLoc and a DFL algorithm that relies on simple parameter tuning and does not require offline measurements. It localizes and tracks an entity using an adaptive spring relaxation approach. The anchor points of the artificial springs are placed in regions containing the links that are affected by the entity. The affected links are determined by comparing the kernel-based histogram distance of successive RSSI values. SpringLoc is benchmarked against existing algorithms in two diverse and realistic environments, showing significant improvement over the state-of-the-art, especially in situations with low-node deployment density.
  • Item
    Hyperledger Fabric Blockchain for Securing the Edge Internet of Things
    (MDPI (Basel, Switzerland), 7/01/2021) Pajooh HH; Rashid M; Alam F; Demidenko S
    Providing security and privacy to the Internet of Things (IoT) networks while achieving it with minimum performance requirements is an open research challenge. Blockchain technology, as a distributed and decentralized ledger, is a potential solution to tackle the limitations of the current peer-to-peer IoT networks. This paper presents the development of an integrated IoT system implementing the permissioned blockchain Hyperledger Fabric (HLF) to secure the edge computing devices by employing a local authentication process. In addition, the proposed model provides traceability for the data generated by the IoT devices. The presented solution also addresses the IoT systems’ scalability challenges, the processing power and storage issues of the IoT edge devices in the blockchain network. A set of built-in queries is leveraged by smart-contracts technology to define the rules and conditions. The paper validates the performance of the proposed model with practical implementation by measuring performance metrics such as transaction throughput and latency, resource consumption, and network use. The results show that the proposed platform with the HLF implementation is promising for the security of resource-constrained IoT devices and is scalable for deployment in various IoT scenarios.