Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Genomic insights into the physiology of Quinella, an iconic uncultured rumen bacterium.
    (Nature Portfolio, 2022-10-20) Kumar S; Altermann E; Leahy SC; Jauregui R; Jonker A; Henderson G; Kittelmann S; Attwood GT; Kamke J; Waters SM; Patchett ML; Janssen PH
    Quinella is a genus of iconic rumen bacteria first reported in 1913. There are no cultures of these bacteria, and information on their physiology is scarce and contradictory. Increased abundance of Quinella was previously found in the rumens of some sheep that emit low amounts of methane (CH4) relative to their feed intake, but whether Quinella contributes to low CH4 emissions is not known. Here, we concentrate Quinella cells from sheep rumen contents, extract and sequence DNA, and reconstruct Quinella genomes that are >90% complete with as little as 0.20% contamination. Bioinformatic analyses of the encoded proteins indicate that lactate and propionate formation are major fermentation pathways. The presence of a gene encoding a potential uptake hydrogenase suggests that Quinella might be able to use free hydrogen (H2). None of the inferred metabolic pathways is predicted to produce H2, a major precursor of CH4, which is consistent with the lower CH4 emissions from those sheep with high abundances of this bacterium.
  • Item
    Extracellular Polysaccharide Extraction from Streptococcus thermophilus in Fermented Milk.
    (American Society for Microbiology, 2022-04-27) Wa Y; Chanyi RM; Nguyen HTH; Gu R; Day L; Altermann E; Cocolin L
    Lactic acid bacteria such as Streptococcus thermophilus are known to produce extracellular polysaccharide (EPS) in fermented foods that enhance the creaminess and mouthfeel of the product, such as yogurt. Strains producing larger amounts of EPS are highly sought-after, and therefore, robust and accurate quantification methodologies are important. This study found that two commonly used methodologies significantly underestimated the amount of EPS produced as measured using a milk matrix. To this end, a proteolytic step was implemented prior to EPS extraction (Method C). An initial proteolytic step using xanthan gum-spiked milk significantly increased recovery yield to 64%, compared to 27.8% for Method A and 34.3% for Method B. Method C showed no improvement when assessed using a chemically defined medium. Method C was further validated using three strains of S. thermophilus with varying EPS-production capabilities (STLOW, STMID, STHIGH). Overall, Method C demonstrated significant improvements in the EPS extraction yield for all three S. thermophilus strains in fermented milk. On average, Method C improved isolation yield by ∼3- to 6-fold compared with Method A and by ∼2- to 3-fold compared with method B. There were no significant differences between samples when they were grown in a chemically defined medium, highlighting the importance of a proteolytic step specifically for fermented milk samples. In commercial applications, accurate quantification of EPS-production is an important aspect when finding new strains. IMPORTANCE Extracellular polysaccharide (EPS) production by milk-fermenting microorganisms is a highly sought-after trait in improving the perceived thickness, creaminess, and mouthfeel of yogurt. Streptococcus thermophilus are commonly isolated and their EPS production is quantified in the search for higher-producing strains. In this study, we demonstrated that two commonly used methods for isolating EPS from milk samples significantly underestimated the true amount of EPS present. We demonstrated that the addition of a proteolytic step prior to EPS extraction isolated over 2-fold more EPS than identical samples processed using the traditional protocols. We further validated this method in fermented milk samples from three strains of S. thermophilus that included a low-, mid-, and high-EPS producing strain. Again, we showed significant improvements in EPS isolation using a proteolytic step. In the search for new S. thermophilus strains with enhanced EPS production, accurate quantification in an optimal medium is essential.