Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Significant shifts in latitudinal optima of North American birds.
    (Proceedings of the National Academy of Sciences, 2024-04-01) Martins PM; Anderson MJ; Sweatman WL; Punnett AJ; Marquet P
    Changes in climate can alter environmental conditions faster than most species can adapt. A prediction under a warming climate is that species will shift their distributions poleward through time. While many studies focus on range shifts, latitudinal shifts in species' optima can occur without detectable changes in their range. We quantified shifts in latitudinal optima for 209 North American bird species over the last 55 y. The latitudinal optimum (m) for each species in each year was estimated using a bespoke flexible non-linear zero-inflated model of abundance vs. latitude, and the annual shift in m through time was quantified. One-third (70) of the bird species showed a significant shift in their optimum. Overall, mean peak abundances of North American birds have shifted northward, on average, at a rate of 1.5 km per year (±0.58 SE), corresponding to a total distance moved of 82.5 km (±31.9 SE) over the last 55 y. Stronger poleward shifts at the continental scale were linked to key species' traits, including thermal optimum, habitat specialization, and territoriality. Shifts in the western region were larger and less variable than in the eastern region, and they were linked to species' thermal optimum, habitat density preference, and habitat specialization. Individual species' latitudinal shifts were most strongly linked to their estimated thermal optimum, clearly indicating a climate-driven response. Displacement of species from their historically optimal realized niches can have dramatic ecological consequences. Effective conservation must consider within-range abundance shifts. Areas currently deemed "optimal" are unlikely to remain so.
  • Item
    Microbiome and environment explain the absence of correlations between consumers and their diet in Bornean microsnails
    (Wiley Periodicals LLC on behalf of Ecological Society of America, 2021-02) Hendriks KP; Bisschop K; Kortenbosch HH; Kavanagh JC; Larue AEA; Chee-Chean P; Bonte D; Duijm EJ; Salles JF; Pigot AL; Richter Mendoza FJ; Schilthuizen M; Anderson MJ; Speksnijder AGCL; Etienne RS
    Classical ecological theory posits that species partition resources such that each species occupies a unique resource niche. In general, the availability of more resources allows more species to co-occur. Thus, a strong relationship between communities of consumers and their resources is expected. However, correlations may be influenced by other layers in the food web, or by the environment. Here we show, by studying the relationship between communities of consumers (land snails) and individual diets (from seed plants), that there is in fact no direct, or at most a weak but negative, relationship. However, we found that the diversity of the individual microbiome positively correlates with both consumer community diversity and individual diet diversity in three target species. Moreover, these correlations were affected by various environmental variables, such as anthropogenic activity, habitat island size, and a possibly important nutrient source, guano runoff from nearby caves. Our results suggest that the microbiome and the environment explain the absence of correlations between diet and consumer community diversity. Hence, we advocate that microbiome inventories are routinely added to any community dietary analysis, which our study shows can be done with relatively little extra effort. Our approach presents the tools to quickly obtain an overview of the relationships between consumers and their resources. We anticipate our approach to be useful for ecologists and environmentalists studying different communities in a local food web.