Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
Search Results
Item A Machine Learning Approach to Enhance the Performance of D2D-Enabled Clustered Networks(IEEE, 20/01/2021) Aslam S; Alam F; Hasan SF; Rashid MAClustering has been suggested as an effective technique to enhance the performance of multicasting networks. Typically, a cluster head is selected to broadcast the cached content to its cluster members utilizing Device-to-Device (D2D) communication. However, some users can attain better performance by being connected with the Evolved Node B (eNB) rather than being in the clusters. In this article, we apply machine learning algorithms, namely Support Vector Machine, Random Forest, and Deep Neural Network to identify the users that should be serviced by the eNB. We therefore propose a mixed-mode content distribution scheme where the cluster heads and eNB service the two segregated groups of users to improve the performance of existing clustering schemes. A D2D-enabled multicasting scenario has been set up to perform a comprehensive simulation study that demonstrates that by utilizing the mixed-mode scheme, the performance of individual users, as well as the whole network, improve significantly in terms of throughput, energy consumption, and fairness. This study also demonstrates the trade-off between eNB loading and performance improvement for various parameters.Item A Novel Weighted Clustering Algorithm Supported by a Distributed Architecture for D2D Enabled Content-Centric Networks(MDPI (Basel, Switzerland), 25/09/2020) Aslam S; Alam F; Hasan S; Rashid MNext generation cellular systems need efficient content-distribution schemes. Content-sharing via Device-to-Device (D2D) clustered networks has emerged as a popular approach for alleviating the burden on the cellular network. In this article, we utilize Content-Centric Networking and Network Virtualization to propose a distributed architecture, that supports efficient content delivery. We propose to use clustering at the user level for content-distribution. A weighted multifactor clustering algorithm is proposed for grouping the D2D User Equipment (DUEs) sharing a common interest. The proposed algorithm is evaluated in terms of energy efficiency, area spectral efficiency, and throughput. The effect of the number of clusters on these performance parameters is also discussed. The proposed algorithm has been further modified to allow for a tradeoff between fairness and other performance parameters. A comprehensive simulation study demonstrates that the proposed clustering algorithm is more flexible and outperforms several classical and state-of-the-art algorithms.

