Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item Novel machine learning-driven comparative analysis of CSP, STFT, and CSP-STFT fusion for EEG data classification across multiple meditation and non-meditation sessions in BCI pipeline.(BioMed Central Ltd, 2025-02-08) Liyanagedera ND; Bareham CA; Kempton H; Guesgen HWThis study focuses on classifying multiple sessions of loving kindness meditation (LKM) and non-meditation electroencephalography (EEG) data. This novel study focuses on using multiple sessions of EEG data from a single individual to train a machine learning pipeline, and then using a new session data from the same individual for the classification. Here, two meditation techniques, LKM-Self and LKM-Others were compared with non-meditation EEG data for 12 participants. Among many tested, three BCI pipelines we built produced promising results, successfully detecting features in meditation/ non-meditation EEG data. While testing different feature extraction algorithms, a common neural network structure was used as the classification algorithm to compare the performance of the feature extraction algorithms. For two of those pipelines, Common Spatial Patterns (CSP) and Short Time Fourier Transform (STFT) were successfully used as feature extraction algorithms where both these algorithms are significantly new for meditation EEG. As a novel concept, the third BCI pipeline used a feature extraction algorithm that fused the features of CSP and STFT, achieving the highest classification accuracies among all tested pipelines. Analyses were conducted using EEG data of 3, 4 or 5 sessions, totaling 3960 tests on the entire dataset. At the end of the study, when considering all the tests, the overall classification accuracy using SCP alone was 67.1%, and it was 67.8% for STFT alone. The algorithm combining the features of CSP and STFT achieved an overall classification accuracy of 72.9% which is more than 5% higher than the other two pipelines. At the same time, the highest mean classification accuracy for the 12 participants was achieved using the pipeline with the combination of CSP STFT algorithm, reaching 75.5% for LKM-Self/ non-meditation for the case of 5 sessions of data. Additionally, the highest individual classification accuracy of 88.9% was obtained by the participant no. 14. Furthermore, the results showed that the classification accuracies for all three pipelines increased with the number of training sessions increased from 2 to 3 and then to 4. The study was successful in classifying a new session of EEG meditation/ non-meditation data after training machine learning algorithms using a different set of session data, and this achievement will be beneficial in the development of algorithms that support meditation.Item Bedside EEG predicts longitudinal behavioural changes in disorders of consciousness(Elsevier Inc, 2020) Bareham CA; Roberts N; Allanson J; Hutchinson PJA; Pickard JD; Menon DK; Chennu SProviding an accurate prognosis for prolonged disorder of consciousness (pDOC) patients remains a clinical challenge. Large cross-sectional studies have demonstrated the diagnostic and prognostic value of functional brain networks measured using high-density electroencephalography (hdEEG). Nonetheless, the prognostic value of these neural measures has yet to be assessed by longitudinal follow-up. We address this gap by assessing the utility of hdEEG to prognosticate long-term behavioural outcome, employing longitudinal data collected from a cohort of patients assessed systematically with resting hdEEG and the Coma Recovery Scale-Revised (CRS-R) at the bedside over a period of two years. We used canonical correlation analysis to relate clinical (including CRS-R scores combined with demographic variables) and hdEEG variables to each other. This analysis revealed that the patient’s age, and the hdEEG theta band power and alpha band connectivity, contributed most significantly to the relationship between hdEEG and clinical variables. Further, we found that hdEEG measures recorded at the time of assessment augmented clinical measures in predicting CRS-R scores at the next assessment. Moreover, the rate of hdEEG change not only predicted later changes in CRS-R scores, but also outperformed clinical measures in terms of prognostic power. Together, these findings suggest that improvements in functional brain networks precede changes in behavioural awareness in pDOC. We demonstrate here that bedside hdEEG assessments conducted at specialist nursing homes are feasible, have clinical utility, and can complement clinical knowledge and systematic behavioural assessments to inform prognosis and care.
