Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    Antibiotic and Heavy Metal Resistance in Bacteria from Contaminated Agricultural Soil: Insights from a New Zealand Airstrip
    (MDPI (Basel, Switzerland), 2025-02) Heydari A; Kim ND; Biggs PJ; Horswell J; Gielen GJHP; Siggins A; Bromhead C; Meza-Alvarado JC; Palmer BR; Abia ALK
    BACKGROUND/OBJECTIVES: Agricultural soils accumulate inorganic contaminants from the application of phosphate fertilisers. An airstrip located at Belmont Regional Park (BRP), near Wellington, New Zealand, has been found to have a gradient of cadmium contamination due to spillage of superphosphate fertiliser. METHODS: Soil samples from the BRP airstrip with a gradient of cadmium contamination, were used as a novel source to explore bacterial communities' resistance to heavy metals (HMs) and any co-selected antibiotic (Ab) resistance. RESULTS: Differences between BRP soil samples with higher levels of HMs compared to those with lower HM concentrations showed significantly more bacterial isolates resistant to both HMs (40.6% versus 63.1% resistant to 0.01 mM CdCl2, p < 0.05) and Abs (23.4% versus 37.8% resistant to 20 μg/mL tetracycline, p < 0.05) in soils with higher initial levels of HMs (1.14 versus 7.20 mg kg-1 Cd). Terminal restriction fragment length polymorphism (TRFLP) and 16S rDNA next-generation sequencing profiling investigated changes in HM-induced bacterial communities. Significant differences were observed among the bacterial community structures in the selected BRP soil samples. Conjugative transfer of cadmium resistance from 23-38% of cadmium-resistant isolates to a characterised recipient bacterial strain in vitro suggested many of these genes were carried by mobile genetic elements. Transconjugants were also resistant to zinc, mercury, and Abs. Higher levels of HMs in soil correlated with increased resistance to HMs, Abs, and elevated levels of HMs thus disturbed the bacterial community structure in BRP soil significantly. CONCLUSIONS: These findings suggest that HM contamination of agricultural soil can select for Ab resistance in soil bacteria with potential risks to human and animal health.
  • Item
    Genomic epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli from humans and a river in Aotearoa New Zealand.
    (Microbiology Society, 2025-01-10) Gray HA; Biggs PJ; Midwinter AC; Rogers LE; Fayaz A; Akhter RN; Burgess SA
    In Aotearoa New Zealand, urinary tract infections in humans are commonly caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. This group of antimicrobial-resistant bacteria are often multidrug resistant. However, there is limited information on ESBL-producing E. coli found in the environment and their link with human clinical isolates. In this study, we examined the genetic relationship between environmental and human clinical ESBL-producing E. coli and isolates collected in parallel within the same area over 14 months. Environmental samples were collected from treated effluent, stormwater and multiple locations along an Aotearoa New Zealand river. Treated effluent, stormwater and river water sourced downstream of the treated effluent outlet were the main samples that were positive for ESBL-producing E. coli (7/14 samples, 50.0%; 3/6 samples, 50%; and 15/28 samples, 54%, respectively). Whole-genome sequence comparison was carried out on 307 human clinical and 45 environmental ESBL-producing E. coli isolates. Sequence type 131 was dominant for both clinical (147/307, 47.9%) and environmental isolates (11/45, 24.4%). Only one ESBL gene was detected in each isolate. Among the clinical isolates, the most prevalent ESBL genes were bla CTX-M-27 (134/307, 43.6%) and bla CTX-M-15 (134/307, 43.6%). Among the environmental isolates, bla CTX-M-15 (28/45, 62.2%) was the most prevalent gene. A core SNP analysis of these isolates suggested that some strains were shared between humans and the local river. These results highlight the importance of understanding different transmission pathways for the spread of ESBL-producing E. coli.
  • Item
    Assessing antimicrobial resistance in pasture-based dairy farms: a 15-month surveillance study in New Zealand.
    (American Society for Microbiology, 2024-10-23) Collis RM; Biggs PJ; Burgess SA; Midwinter AC; Liu J; Brightwell G; Cookson AL
    Antimicrobial resistance is a global public and animal health concern. Antimicrobial resistance genes (ARGs) have been detected in dairy farm environments globally; however, few longitudinal studies have utilized shotgun metagenomics for ARG surveillance in pasture-based systems. This 15-month study aimed to undertake a baseline survey using shotgun metagenomics to assess the relative abundance and diversity of ARGs in two pasture-based dairy farm environments in New Zealand with different management practices. There was no statistically significant difference in overall ARG relative abundance between the two dairy farms (P = 0.321) during the study period. Compared with overseas data, the relative abundance of ARG copies per 16S rRNA gene in feces (0.08-0.17), effluent (0.03-0.37), soil (0.20-0.63), and bulk tank milk (0.0-0.12) samples was low. Models comparing the presence or absence of resistance classes found in >10% of all feces, effluent, and soil samples demonstrated no statistically significant associations (P > 0.05) with "season," and only multi-metal (P = 0.020) and tetracycline (P = 0.0003) resistance were significant at the "farm" level. Effluent samples harbored the most diverse ARGs, some with a recognized public health risk, whereas soil samples had the highest ARG relative abundance but without recognized health risks. This highlights the importance of considering the genomic context and risk of ARGs in metagenomic data sets. This study suggests that antimicrobial resistance on pasture-based dairy farms is low and provides essential baseline ARG surveillance data for such farming systems. IMPORTANCE: Antimicrobial resistance is a global threat to human and animal health. Despite the detection of antimicrobial resistance genes (ARGs) in dairy farm environments globally, longitudinal surveillance in pasture-based systems remains limited. This study assessed the relative abundance and diversity of ARGs in two New Zealand dairy farms with different management practices and provided important baseline ARG surveillance data on pasture-based dairy farms. The overall ARG relative abundance on these two farms was low, which provides further evidence for consumers of the safety of New Zealand's export products. Effluent samples harbored the most diverse range of ARGs, some of which were classified with a recognized risk to public health, whereas soil samples had the highest ARG relative abundance; however, the soil ARGs were not classified with a recognized public health risk. This emphasizes the need to consider genomic context and risk as well as ARG relative abundance in resistome studies.
  • Item
    Genomic Profiling of Mycobacterium tuberculosis Strains, Myanmar
    (Centers for Disease Control and Prevention, 2021-11) Aung HL; Nyunt WW; Fong Y; Biggs PJ; Winkworth RC; Lockhart PJ; Yeo TW; Hill PC; Cook GM; Aung ST
    Multidrug resistance is a major threat to global elimination of tuberculosis (TB). We performed phenotypic drug-susceptibility testing and whole-genome sequencing for 309 isolates from 342 consecutive patients who were given a diagnosis of TB in Yangon, Myanmar, during July 2016‒June 2018. We identified isolates by using the GeneXpert platform to evaluate drug-resistance profiles. A total of 191 (62%) of 309 isolates had rifampin resistance; 168 (88%) of these rifampin-resistant isolates were not genomically related, indicating the repeated emergence of resistance in the population, rather than extensive local transmission. We did not detect resistance mutations to new oral drugs, including bedaquiline and pretomanid. The current GeneXpert MTB/RIF system needs to be modified by using the newly launched Xpert MTB/XDR cartridge or line-probe assay. Introducing new oral drugs to replace those currently used in treatment regimens for multidrug-resistant TB will also be useful for treating TB in Myanmar.
  • Item
    Prevalence and distribution of extended-spectrum β-lactamase and AmpC-producing Escherichia coli in two New Zealand dairy farm environments.
    (2022) Collis RM; Biggs PJ; Burgess SA; Midwinter AC; Brightwell G; Cookson AL
    Antimicrobial resistance (AMR) is a global threat to human and animal health, with the misuse and overuse of antimicrobials being suggested as the main driver of resistance. In a global context, New Zealand (NZ) is a relatively low user of antimicrobials in animal production. However, the role antimicrobial usage on pasture-based dairy farms, such as those in NZ, plays in driving the spread of AMR within the dairy farm environment remains equivocal. Culture-based methods were used to determine the prevalence and distribution of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Escherichia coli from farm environmental samples collected over a 15-month period from two NZ dairy farms with contrasting management practices. Whole genome sequencing was utilised to understand the genomic epidemiology and antimicrobial resistance gene repertoire of a subset of third-generation cephalosporin resistant E. coli isolated in this study. There was a low sample level prevalence of ESBL-producing E. coli (faeces 1.7%; farm dairy effluent, 6.7% from Dairy 4 and none from Dairy 1) but AmpC-producing E. coli were more frequently isolated across both farms (faeces 3.3% and 8.3%; farm dairy effluent 38.4%, 6.7% from Dairy 1 and Dairy 4, respectively). ESBL- and AmpC-producing E. coli were isolated from faeces and farm dairy effluent in spring and summer, during months with varying levels of antimicrobial use, but no ESBL- or AmpC-producing E. coli were isolated from bulk tank milk or soil from recently grazed paddocks. Hybrid assemblies using short- and long-read sequence data from a subset of ESBL- and AmpC-producing E. coli enabled the assembly and annotation of nine plasmids from six E. coli, including one plasmid co-harbouring 12 antimicrobial resistance genes. ESBL-producing E. coli were infrequently identified from faeces and farm dairy effluent on the two NZ dairy farms, suggesting they are present at a low prevalence on these farms. Plasmids harbouring several antimicrobial resistance genes were identified, and bacteria carrying such plasmids are a concern for both animal and public health. AMR is a burden for human, animal and environmental health and requires a holistic "One Health" approach to address.