Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
4 results
Search Results
Item Assessing Controlled Traffic Farming as a Precision Agriculture Strategy for Minimising N2O Losses(MDPI AG, 2025-08-04) Raveendrakumaran B; Grafton M; Jeyakumar P; Bishop P; Davies C; Li DItem Formulation and characterization of polyester-lignite composite coated slow-release fertilizers(Springer Nature Switzerland AG, 26/09/2022) Gunaratnam A; Bishop P; Jeyakumar P; Grafton M; Davies CE; McCurdy MTwo polyester-lignite composite coated urea slow-release fertilizers (SRFs; Poly3 and Poly5) were developed and their physicochemical properties were studied. Both these SRFs significantly (p < 0.05) extended the urea release compared to uncoated urea; Poly3 and Poly5 by 117 and 172 h, respectively. The urea release characteristics of Poly5 were further enhanced by linseed oil application (Poly5-linseed). The SEM images demonstrated the coatings were in contact with the urea and encase urea particles completely with the average coating thickness of 167.2 ± 15 µm. The new interactions between polyester and lignite in the composite coating were confirmed by the FTIR analysis. Polyester-calcium carbonate (Polyester-CaCO3) coated SRFs (Calc3 and Calc5) were developed using CaCO3 as a filler in place of lignite and the urea dissolution rate was compared with Poly3 and Poly5. The urea release times for the polyester-CaCO3 formulations, 48 and 72 h, were significantly (P < 0.05) lower than the polyester-lignite formulation, showing that lignite imparted greater control over release time than CaCO3. Findings from this work showed that polyester-lignite composites can be used as a coating material for SRFs.Item Copper induces nitrification by ammonia-oxidizing bacteria and archaea in pastoral soils(Wiley, 12/12/2022) Matse D; Jeyakumar P; Bishop P; Anderson CCopper (Cu) is the main co-factor in the functioning of the ammonia monooxygenase (AMO) enzyme, which is responsible for the first step of ammonia oxidation. We report a greenhouse-based pot experiment that examines the response of ammonia-oxidizing bacteria and archaea (AOB and AOA) to different bioavailable Cu concentrations in three pastoral soils (Recent, Pallic, and Pumice soils) planted with ryegrass (Lolium perenne L.). Five treatments were used: control (no urine and Cu), urine only at 300 mg N kg-1 soil (Cu0), urine + 1 mg Cu kg-1 soil (Cu1), urine + 10 mg Cu kg-1 soil (Cu10), and urine + 100 mg Cu kg-1 soil (Cu100). Pots were destructively sampled at Day 0, 1, 7, 15, and 25 after urine application. The AOB/AOA amoA gene abundance was analyzed by real-time quantitative polymerase chain reaction at Days 1 and 15. The AOB amoA gene abundance increased 10.0- and 22.6-fold in the Recent soil and 2.1- and 2.5-fold in the Pallic soil for the Cu10 compared with Cu0 on Days 1 and 15, respectively. In contrast, the Cu100 was associated with a reduction in AOB amoA gene abundance in the Recent and Pallic soils but not in the Pumice soil. This may be due to the influence of soil cation exchange capacity differences on the bioavailable Cu. Bioavailable Cu in the Recent and Pallic soils influenced nitrification and AOB amoA gene abundance, as evidenced by the strong positive correlation between bioavailable Cu, nitrification, and AOB amoA. However, bioavailable Cu did not influence the nitrification and AOA amoA gene abundance increase.Item The Nitrogen Dynamics of Newly Developed Lignite-Based Controlled-Release Fertilisers in the Soil-Plant Cycle(MDPI AG, 29/11/2022) Gunaratnam A; Grafton M; Jeyakumar P; Bishop P; Davies C; McCurdy MThe effect of newly developed controlled-release fertilisers (CRFs); Epox5 and Ver-1 and two levels of Fe2+ applications (478 and 239 kg-FeSO4 ha−1) on controlling nitrogen (N) losses, were tested on ryegrass, in a climate-controlled lysimeter system. The Epox5 and Ver-1 effectively decreased the total N losses by 37 and 47%, respectively, compared to urea. Nitrous oxide (N2O) emissions by Ver-1 were comparable to urea. However, Epox5 showed significantly higher (p < 0.05) N2O emissions (0.5 kg-N ha−1), compared to other treatments, possibly due to the lock-off nitrogen in Epox5. The application of Fe2+ did not show a significant effect in controlling the N leaching loss and N2O emission. Therefore, a dissimilatory nitrate reduction and chemodenitrification pathways were not pronounced in this study. The total dry matter yield, N accumulation, N use efficiency and soil residual N were not significantly different among any N treatments. Nevertheless, the N accumulation of CRFs was lower in the first month, possibly due to the slow release of urea. The total root biomass was significantly (p < 0.05) lower for Epox5 (35%), compared to urea. The hierarchical clustering of all treatments revealed that Ver-1 outperformed other treatments, followed by Epox5. Further studies are merited to identify the potential of Fe2+ as a controlling agent for N losses.
