Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    Whole-genome resequencing of the native sheep provides insights into the microevolution and identifies genes associated with reproduction traits
    (BioMed Central Ltd, 2023-07-11) Zhu M; Yang Y; Yang H; Zhao Z; Zhang H; Blair HT; Zheng W; Wang M; Fang C; Yu Q; Zhou H; Qi H
    BACKGROUND: Sheep genomes undergo numerous genes losses, gains and mutation that generates genome variability among breeds of the same species after long time natural and artificial selection. However, the microevolution of native sheep in northwest China remains elusive. Our aim was to compare the genomes and relevant reproductive traits of four sheep breeds from different climatic environments, to unveil the selection challenges that this species cope with, and the microevolutionary differences in sheep genomes. Here, we resequenced the genomes of 4 representative sheep breeds in northwest China, including Kazakh sheep and Duolang sheep of native breeds, and Hu sheep and Suffolk sheep of exotic breeds with different reproductive characteristics. RESULTS: We found that these four breeds had a similar expansion experience from ~ 10,000 to 1,000,000 years ago. In the past 10,000 years, the selection intensity of the four breeds was inconsistent, resulting in differences in reproductive traits. We explored the sheep variome and selection signatures by FST and θπ. The genomic regions containing genes associated with different reproductive traits that may be potential targets for breeding and selection were detected. Furthermore, non-synonymous mutations in a set of plausible candidate genes and significant differences in their allele frequency distributions across breeds with different reproductive characteristics were found. We identified PAK1, CYP19A1 and PER1 as a likely causal gene for seasonal reproduction in native sheep through qPCR, Western blot and ELISA analyses. Also, the haplotype frequencies of 3 tested gene regions related to reproduction were significantly different among four sheep breeds. CONCLUSIONS: Our results provide insights into the microevolution of native sheep and valuable genomic information for identifying genes associated with important reproductive traits in sheep.
  • Item
    Genetic and phenotypic relationships between ewe reproductive performance and wool and growth traits in Uruguayan Ultrafine Merino sheep.
    (Oxford University Press on behalf of the American Society of Animal Science, 2023-03-07) Ramos Z; Garrick DJ; Blair HT; De Barbieri I; Ciappesoni G; Montossi F; Kenyon PR
    This study reports genetic parameters for yearling and adult wool and growth traits, and ewe reproductive performance. Data were sourced from an Uruguayan Merino flock involved in a long-term selection program focused on reduced fiber diameter (FD), and increased clean fleece weight (CFW) and live weight (LW). Pedigree and performance data from approximately 5,700 mixed-sex yearling lambs and 2,000 mixed-age ewes born between 1999 and 2019 were analyzed. The number of records ranged from 1,267 to 5,738 for yearling traits, and from 1,931 to 7,079 for ewe productive and reproductive performance. Data on yearling and adult wool traits, LW and body condition score (BCS), yearling eye muscle area (Y_EMA), and fat thickness (Y_FAT), and several reproduction traits were analyzed. The genetic relationships between FD and reproduction traits were not different from zero. Moderate unfavorable genetic correlations were found between adult CFW and ewe lifetime reproduction traits (-0.34 ± 0.08 and -0.33 ± 0.09 for the total number of lambs weaned and total lamb LW at weaning, respectively). There were moderate to strong positive genetic correlations between yearling LW and all reproduction traits other than ewe-rearing ability (-0.08 ± 0.11) and pregnancy rate (0.18 ± 0.08). The genetic correlations between Y_EMA and reproduction traits were positive and ranged from 0.15 to 0.49. Moderate unfavorable genetic correlations were observed between yearling FD and Y_FAT and between adult FD and BCS at mating (0.31 ± 0.12 and 0.23 ± 0.07, respectively). The genetic correlations between adult fleece weight and ewe BCS at different stages of the cycle were negative, but generally not different from zero. This study shows that selection for reduced FD is unlikely to have any effect on reproduction traits. Selection for increased yearling LW and Y_EMA will improve ewe reproductive performance. On the other hand, selection for increased adult CFW will reduce ewe reproductive performance, whereas selection for reduced FD will negatively impact body fat levels. Although unfavorable genetic relationships between wool traits and both FAT and ewe reproductive performance existed, simultaneous improvements in the traits would occur using appropriately designed indexes.
  • Item
    Association of Single Nucleotide Polymorphism in the DGAT1 Gene with the Fatty Acid Composition of Cows Milked Once and Twice a Day
    (MDPI (Basel, Switzerland), 2023-03-21) Sanjayaranj I; MacGibbon AKH; Holroyd SE; Janssen PWM; Blair HT; Lopez-Villalobos N
    A single nucleotide polymorphism (SNP) rs109421300 of the diacylglycerol acyltransferase 1 (DGAT1) on bovine chromosome 14 is associated with fat yield, fat percentage, and protein percentage. This study aimed to investigate the effect of SNP rs109421300 on production traits and the fatty acid composition of milk from cows milked once a day (OAD) and twice a day (TAD) under New Zealand grazing conditions. Between September 2020 and March 2021, 232 cows from a OAD herd and 182 cows from a TAD herd were genotyped. The CC genotype of SNP rs109421300 was associated with significantly (p < 0.05) higher fat yield, fat percentage, and protein percentage, and lower milk and protein yields in both milking frequencies. The CC genotype was also associated with significantly (p < 0.05) higher proportions of C16:0 and C18:0, higher predicted solid fat content at 10 °C (SFC10), and lower proportions of C4:0 and C18:1 cis-9 in both milking frequencies. The association of SNP with fatty acids was similar in both milking frequencies, with differences in magnitudes. The SFC10 of cows milked OAD was lower than cows milked TAD for all three SNP genotypes suggesting the suitability of OAD milk for producing easily spreadable butter. These results demonstrate that selecting cows with the CC genotype is beneficial for New Zealand dairy farmers with the current payment system, however, this would likely result in less spreadable butter.
  • Item
    Genome-Wide Association Studies of Live Weight at First Breeding at Eight Months of Age and Pregnancy Status of Ewe Lambs
    (MDPI (Basel, Switzerland), 2023-03-27) Haslin E; Pettigrew EJ; Hickson RE; Kenyon PR; Gedye KR; Lopez-Villalobos N; Jayawardana JMDR; Morris ST; Blair HT; Ahmad SM
    This study estimated genetic parameters and identified candidate genes associated with live weight, and the occurrence of pregnancy in 1327 Romney ewe lambs using genome-wide association studies. Phenotypic traits considered were the occurrence of pregnancy in ewe lambs and live weight at eight months of age. Genetic parameters were estimated, and genomic variation was assessed using 13,500 single-nucleotide polymorphic markers (SNPs). Ewe lamb live weight had medium genomic heritability and was positively genetically correlated with occurrence of pregnancy. This suggests that selection for heavier ewe lambs is possible and would likely improve the occurrence of pregnancy in ewe lambs. No SNPs were associated with the occurrence of pregnancy; however, three candidate genes were associated with ewe lamb live weight. Tenascin C (TNC), TNF superfamily member 8 (TNFSF8) and Collagen type XXVIII alpha 1 chain (COL28A1) are involved in extracellular matrix organization and regulation of cell fate in the immune system. TNC may be involved in ewe lamb growth, and therefore, could be of interest for selection of ewe lamb replacements. The association between ewe lamb live weight and TNFSF8 and COL28A1 is unclear. Further research is needed using a larger population to determine whether the genes identified can be used for genomic selection of replacement ewe lambs.
  • Item
    Identification of Genomic Regions Associated with Concentrations of Milk Fat, Protein, Urea and Efficiency of Crude Protein Utilization in Grazing Dairy Cows
    (MDPI (Basel, Switzerland), 2021-03-23) Ariyarathne HBPC; Correa-Luna M; Blair HT; Garrick DJ; Lopez-Villalobos N
    Abstract The objective of this study was to identify genomic regions associated with milk fat percentage (FP), crude protein percentage (CPP), urea concentration (MU) and efficiency of crude protein utilization (ECPU: ratio between crude protein yield in milk and dietary crude protein intake) using grazing, mixed-breed, dairy cows in New Zealand. Phenotypes from 634 Holstein Friesian, Jersey or crossbred cows were obtained from two herds at Massey University. A subset of 490 of these cows was genotyped using Bovine Illumina 50K SNP-chips. Two genome-wise association approaches were used, a single-locus model fitted to data from 490 cows and a single-step Bayes C model fitted to data from all 634 cows. The single-locus analysis was performed with the Efficient Mixed-Model Association eXpedited model as implemented in the SVS package. Single nucleotide polymorphisms (SNPs) with genome-wide association p-values ≤ 1.11 × 10−6 were considered as putative quantitative trait loci (QTL). The Bayes C analysis was performed with the JWAS package and 1-Mb genomic windows containing SNPs that explained > 0.37% of the genetic variance were considered as putative QTL. Candidate genes within 100 kb from the identified SNPs in single-locus GWAS or the 1-Mb windows were identified using gene ontology, as implemented in the Ensembl Genome Browser. The genes detected in association with FP (MGST1, DGAT1, CEBPD, SLC52A2, GPAT4, and ACOX3) and CPP (DGAT1, CSN1S1, GOSR2, HERC6, and IGF1R) were identified as candidates. Gene ontology revealed six novel candidate genes (GMDS, E2F7, SIAH1, SLC24A4, LGMN, and ASS1) significantly associated with MU whose functions were in protein catabolism, urea cycle, ion transportation and N excretion. One novel candidate gene was identified in association with ECPU (MAP3K1) that is involved in post-transcriptional modification of proteins. The findings should be validated using a larger population of New Zealand grazing dairy cows.
  • Item
    Genomic Regions Associated with Wool, Growth and Reproduction Traits in Uruguayan Merino Sheep
    (MDPI (Basel, Switzerland), 2023-01-07) Ramos Z; Garrick DJ; Blair HT; Vera B; Ciappesoni G; Kenyon PR
    The aim of this study was to identify genomic regions and genes associated with the fiber diameter (FD), clean fleece weight (CFW), live weight (LW), body condition score (BCS), pregnancy rate (PR) and lambing potential (LP) of Uruguayan Merino sheep. Phenotypic records of approximately 2000 mixed-age ewes were obtained from a Merino nucleus flock. Genome-wide association studies were performed utilizing single-step Bayesian analysis. For wool traits, a total of 35 genomic windows surpassed the significance threshold (PVE ≥ 0.25%). The proportion of the total additive genetic variance explained by those windows was 4.85 and 9.06% for FD and CFW, respectively. There were 42 windows significantly associated with LWM, which collectively explained 43.2% of the additive genetic variance. For BCS, 22 relevant windows accounted for more than 40% of the additive genetic variance, whereas for the reproduction traits, 53 genomic windows (24 and 29 for PR and LP, respectively) reached the suggestive threshold of 0.25% of the PVE. Within the top 10 windows for each trait, we identified several genes showing potential associations with the wool (e.g., IGF-1, TGFB2R, PRKCA), live weight (e.g., CAST, LAP3, MED28, HERC6), body condition score (e.g., CDH10, TMC2, SIRPA, CPXM1) or reproduction traits (e.g., ADCY1, LEPR, GHR, LPAR2) of the mixed-age ewes.