Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
5 results
Search Results
Item Genomic epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli from humans and a river in Aotearoa New Zealand.(Microbiology Society, 2025-01-10) Gray HA; Biggs PJ; Midwinter AC; Rogers LE; Fayaz A; Akhter RN; Burgess SAIn Aotearoa New Zealand, urinary tract infections in humans are commonly caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. This group of antimicrobial-resistant bacteria are often multidrug resistant. However, there is limited information on ESBL-producing E. coli found in the environment and their link with human clinical isolates. In this study, we examined the genetic relationship between environmental and human clinical ESBL-producing E. coli and isolates collected in parallel within the same area over 14 months. Environmental samples were collected from treated effluent, stormwater and multiple locations along an Aotearoa New Zealand river. Treated effluent, stormwater and river water sourced downstream of the treated effluent outlet were the main samples that were positive for ESBL-producing E. coli (7/14 samples, 50.0%; 3/6 samples, 50%; and 15/28 samples, 54%, respectively). Whole-genome sequence comparison was carried out on 307 human clinical and 45 environmental ESBL-producing E. coli isolates. Sequence type 131 was dominant for both clinical (147/307, 47.9%) and environmental isolates (11/45, 24.4%). Only one ESBL gene was detected in each isolate. Among the clinical isolates, the most prevalent ESBL genes were bla CTX-M-27 (134/307, 43.6%) and bla CTX-M-15 (134/307, 43.6%). Among the environmental isolates, bla CTX-M-15 (28/45, 62.2%) was the most prevalent gene. A core SNP analysis of these isolates suggested that some strains were shared between humans and the local river. These results highlight the importance of understanding different transmission pathways for the spread of ESBL-producing E. coli.Item Extended-spectrum β-lactamase- and AmpC β-lactamase-producing Enterobacterales associated with urinary tract infections in the New Zealand community: a case-control study(Elsevier Ltd on behalf of International Society for Infectious Diseases, 2023-03) Toombs-Ruane LJ; Marshall JC; Benschop J; Drinković D; Midwinter AC; Biggs PJ; Grange Z; Baker MG; Douwes J; Roberts MG; French NP; Burgess SAOBJECTIVES: To assess whether having a pet in the home is a risk factor for community-acquired urinary tract infections associated with extended-spectrum β-lactamase (ESBL)- or AmpC β-lactamase (ACBL)- producing Enterobacterales. METHODS: An unmatched case-control study was conducted between August 2015 and September 2017. Cases (n = 141) were people with community-acquired urinary tract infection (UTI) caused by ESBL- or ACBL-producing Enterobacterales. Controls (n = 525) were recruited from the community. A telephone questionnaire on pet ownership and other factors was administered, and associations were assessed using logistic regression. RESULTS: Pet ownership was not associated with ESBL- or ACBL-producing Enterobacterales-related human UTIs. A positive association was observed for recent antimicrobial treatment, travel to Asia in the previous year, and a doctor's visit in the last 6 months. Among isolates with an ESBL-/ACBL-producing phenotype, 126/134 (94%) were Escherichia coli, with sequence type 131 being the most common (47/126). CONCLUSIONS: Companion animals in the home were not found to be associated with ESBL- or ACBL-producing Enterobacterales-related community-acquired UTIs in New Zealand. Risk factors included overseas travel, recent antibiotic use, and doctor visits.Item Whole genome sequence analysis of ESBL-producing Escherichia coli recovered from New Zealand freshwater sites.(2022-10) Burgess SA; Moinet M; Brightwell G; Cookson ALExtended-spectrum beta lactamase (ESBL)-producing Escherichia coli are often isolated from humans with urinary tract infections and may display a multidrug-resistant phenotype. These pathogens represent a target for a One Health surveillance approach to investigate transmission between humans, animals and the environment. This study examines the multidrug-resistant phenotype and whole genome sequence data of four ESBL-producing E. coli isolated from freshwater in New Zealand. All four isolates were obtained from a catchment with a mixed urban and pastoral farming land-use. Three isolates were sequence type (ST) 131 (CTX-M-27-positive) and the other ST69 (CTX-M-15-positive); a phylogenetic comparison with other locally isolated strains demonstrated a close relationship with New Zealand clinical isolates. Genes associated with resistance to antifolates, tetracyclines, aminoglycosides and macrolides were identified in all four isolates, together with fluoroquinolone resistance in two isolates. The ST69 isolate harboured the bla CTX-M-15 gene on a IncHI2A plasmid, and two of the three ST131 isolates harboured the bla CTX-M-27 genes on IncF plasmids. The last ST131 isolate harboured bla CTX-M-27 on the chromosome in a unique site between gspC and gspD. These data highlight a probable human origin of the isolates with subsequent transmission from urban centres through wastewater to the wider environment.Item Prevalence and distribution of extended-spectrum β-lactamase and AmpC-producing Escherichia coli in two New Zealand dairy farm environments.(2022) Collis RM; Biggs PJ; Burgess SA; Midwinter AC; Brightwell G; Cookson ALAntimicrobial resistance (AMR) is a global threat to human and animal health, with the misuse and overuse of antimicrobials being suggested as the main driver of resistance. In a global context, New Zealand (NZ) is a relatively low user of antimicrobials in animal production. However, the role antimicrobial usage on pasture-based dairy farms, such as those in NZ, plays in driving the spread of AMR within the dairy farm environment remains equivocal. Culture-based methods were used to determine the prevalence and distribution of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Escherichia coli from farm environmental samples collected over a 15-month period from two NZ dairy farms with contrasting management practices. Whole genome sequencing was utilised to understand the genomic epidemiology and antimicrobial resistance gene repertoire of a subset of third-generation cephalosporin resistant E. coli isolated in this study. There was a low sample level prevalence of ESBL-producing E. coli (faeces 1.7%; farm dairy effluent, 6.7% from Dairy 4 and none from Dairy 1) but AmpC-producing E. coli were more frequently isolated across both farms (faeces 3.3% and 8.3%; farm dairy effluent 38.4%, 6.7% from Dairy 1 and Dairy 4, respectively). ESBL- and AmpC-producing E. coli were isolated from faeces and farm dairy effluent in spring and summer, during months with varying levels of antimicrobial use, but no ESBL- or AmpC-producing E. coli were isolated from bulk tank milk or soil from recently grazed paddocks. Hybrid assemblies using short- and long-read sequence data from a subset of ESBL- and AmpC-producing E. coli enabled the assembly and annotation of nine plasmids from six E. coli, including one plasmid co-harbouring 12 antimicrobial resistance genes. ESBL-producing E. coli were infrequently identified from faeces and farm dairy effluent on the two NZ dairy farms, suggesting they are present at a low prevalence on these farms. Plasmids harbouring several antimicrobial resistance genes were identified, and bacteria carrying such plasmids are a concern for both animal and public health. AMR is a burden for human, animal and environmental health and requires a holistic "One Health" approach to address.Item Carriage of Extended-Spectrum-Beta-Lactamase- and AmpC Beta-Lactamase-Producing Escherichia coli Strains from Humans and Pets in the Same Households.(American Society for Microbiology, 24/11/2020) Toombs-Ruane LJ; Benschop J; French NP; Biggs PJ; Midwinter AC; Marshall JC; Chan M; Drinković D; Fayaz A; Baker MG; Douwes J; Roberts MG; Burgess SAExtended-spectrum-beta-lactamase (ESBL)- or AmpC beta-lactamase (ACBL)-producing Escherichia coli bacteria are the most common cause of community-acquired multidrug-resistant urinary tract infections (UTIs) in New Zealand. The carriage of antimicrobial-resistant bacteria has been found in both people and pets from the same household; thus, the home environment may be a place where antimicrobial-resistant bacteria are shared between humans and pets. In this study, we sought to determine whether members (pets and people) of the households of human index cases with a UTI caused by an ESBL- or ACBL-producing E. coli strain also carried an ESBL- or ACBL-producing Enterobacteriaceae strain and, if so, whether it was a clonal match to the index case clinical strain. Index cases with a community-acquired UTI were recruited based on antimicrobial susceptibility testing of urine isolates. Fecal samples were collected from 18 non-index case people and 36 pets across 27 households. Eleven of the 27 households screened had non-index case household members (8/18 people and 5/36 animals) positive for ESBL- and/or ACBL-producing E. coli strains. Whole-genome sequence analysis of 125 E. coli isolates (including the clinical urine isolates) from these 11 households showed that within seven households, the same strain of ESBL-/ACBL-producing E. coli was cultured from both the index case and another person (5/11 households) or pet dog (2/11 households). These results suggest that transmission within the household may contribute to the community spread of ESBL- or ACBL-producing E. coliIMPORTANCEEnterobacteriaceae that produce extended-spectrum beta-lactamases (ESBLs) and AmpC beta-lactamases (ACBLs) are important pathogens and can cause community-acquired illnesses, such as urinary tract infections (UTIs). Fecal carriage of these resistant bacteria by companion animals may pose a risk for transmission to humans. Our work evaluated the sharing of ESBL- and ACBL-producing E. coli isolates between humans and companion animals. We found that in some households, dogs carried the same strain of ESBL-producing E. coli as the household member with a UTI. This suggests that transmission events between humans and animals (or vice versa) are likely occurring within the home environment and, therefore, the community as a whole. This is significant from a health perspective, when considering measures to minimize community transmission, and highlights that in order to manage community spread, we need to consider interventions at the household level.
