Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Global Distribution of Invasive Serotype 35D Streptococcus pneumoniae Isolates following Introduction of 13-Valent Pneumococcal Conjugate Vaccine.
    (American Society for Microbiology, 2018-06-25) Lo SW; Gladstone RA; van Tonder AJ; Hawkins PA; Kwambana-Adams B; Cornick JE; Madhi SA; Nzenze SA; du Plessis M; Kandasamy R; Carter PE; Eser ÖK; Ho PL; Elmdaghri N; Shakoor S; Clarke SC; Antonio M; Everett DB; von Gottberg A; Klugman KP; McGee L; Breiman RF; Bentley SD
    A newly recognized pneumococcal serotype, 35D, which differs from the 35B polysaccharide in structure and serology by not binding to factor serum 35a, was recently reported. The genetic basis for this distinctive serology is due to the presence of an inactivating mutation in wciG, which encodes an O-acetyltransferase responsible for O-acetylation of a galactofuranose. Here, we assessed the genomic data of a worldwide pneumococcal collection to identify serotype 35D isolates and understand their geographical distribution, genetic background, and invasiveness potential. Of 21,980 pneumococcal isolates, 444 were originally typed as serotype 35B by PneumoCaT. Analysis of the wciG gene revealed 23 isolates from carriage (n = 4) and disease (n = 19) with partial or complete loss-of-function mutations, including mutations resulting in premature stop codons (n = 22) and an in-frame mutation (n = 1). These were selected for further analysis. The putative 35D isolates were geographically widespread, and 65.2% (15/23) of them was recovered after the introduction of pneumococcal conjugate vaccine 13 (PCV13). Compared with serotype 35B isolates, putative serotype 35D isolates have higher invasive disease potentials based on odds ratios (OR) (11.58; 95% confidence interval[CI], 1.42 to 94.19 versus 0.61; 95% CI, 0.40 to 0.92) and a higher prevalence of macrolide resistance mediated by mefA (26.1% versus 7.6%; P = 0.009). Using the Quellung reaction, 50% (10/20) of viable isolates were identified as serotype 35D, 25% (5/20) as serotype 35B, and 25% (5/20) as a mixture of 35B/35D. The discrepancy between phenotype and genotype requires further investigation. These findings illustrated a global distribution of an invasive serotype, 35D, among young children post-PCV13 introduction and underlined the invasive potential conferred by the loss of O-acetylation in the pneumococcal capsule.
  • Item
    Genomic adaptations of Campylobacter jejuni to long-term human colonization
    (BioMed Central Ltd, 2021-12-10) Bloomfield SJ; Midwinter AC; Biggs PJ; French NP; Marshall JC; Hayman DTS; Carter PE; Mather AE; Fayaz A; Thornley C; Kelly DJ; Benschop J
    BACKGROUND: Campylobacter is a genus of bacteria that has been isolated from the gastrointestinal tract of humans and animals, and the environments they inhabit around the world. Campylobacter adapt to new environments by changes in their gene content and expression, but little is known about how they adapt to long-term human colonization. In this study, the genomes of 31 isolates from a New Zealand patient and 22 isolates from a United Kingdom patient belonging to Campylobacter jejuni sequence type 45 (ST45) were compared with 209 ST45 genomes from other sources to identify the mechanisms by which Campylobacter adapts to long-term human colonization. In addition, the New Zealand patient had their microbiota investigated using 16S rRNA metabarcoding, and their level of inflammation and immunosuppression analyzed using biochemical tests, to determine how Campylobacter adapts to a changing gastrointestinal tract. RESULTS: There was some evidence that long-term colonization led to genome degradation, but more evidence that Campylobacter adapted through the accumulation of non-synonymous single nucleotide polymorphisms (SNPs) and frameshifts in genes involved in cell motility, signal transduction and the major outer membrane protein (MOMP). The New Zealand patient also displayed considerable variation in their microbiome, inflammation and immunosuppression over five months, and the Campylobacter collected from this patient could be divided into two subpopulations, the proportion of which correlated with the amount of gastrointestinal inflammation. CONCLUSIONS: This study demonstrates how genomics, phylogenetics, 16S rRNA metabarcoding and biochemical markers can provide insight into how Campylobacter adapts to changing environments within human hosts. This study also demonstrates that long-term human colonization selects for changes in Campylobacter genes involved in cell motility, signal transduction and the MOMP; and that genetically distinct subpopulations of Campylobacter evolve to adapt to the changing gastrointestinal environment.