Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 10 of 17
  • Item
    Chiral Lemniscate Formation in Magnetic Field Controlled Topological Fluid Flows
    (Wiley-VCH GmbH, 2025-04-03) Jellicoe M; Gardner Z; Alotaibi AEH; Shoemaker KE; Scott JM; Wang S; Alotaibi BM; Luo X; Chuah C; Gibson CT; He S; Vimalanathan K; Gascooke JR; Chen X; Rodger A; Huang H; Dalgarno SJ; Antunes E; Weiss GA; Li Q; Quinton JS; Raston CL
    High shear spinning top (ST) typhoon-like fluid flow in a rapidly rotating inclined tube within a vortex fluidic device (VFD) approaches homochirality throughout the liquid with toroids of bundled single-walled carbon nanotubes (SWCNTs) twisted into stable chiral lemniscates (in the shape of Figure 8s), predominantly as the R-or S-structures, for the tube rotating clockwise (CW) or counterclockwise (CCW). However, this is impacted by the Earth's magnetic field (BE). Theory predicts 1–20 MPa pressure for their formation, with their absolute chirality determined from scanning electron microscopy (SEM) and atomic force microscopy (AFM) images. Thus, the resultant lemniscate structures establish the absolute chirality of the inner and outer components of the ST flow. These chiral flows and lemniscates can be flipped to the opposite chirality by changing the orientation of the tube relative to the inclination angle of BE, by moving the geographical location. Special conditions prevail where the tangential angle of the outer and inner flow of the ST becomes periodically aligned with BE, which respectively dramatically reduce the formation of toroids (and thus lemniscates) and formation of lemniscates from the toroids formed by the double-helical (DH) flow generated by side wall Coriolis forces and Faraday waves.
  • Item
    Characterizing the dynamics of the rumen microbiota, its metabolites, and blood metabolites across reproductive stages in Small-tailed Han sheep.
    (American Society for Microbiology, 2023-11-10) Sha Y; Liu X; Pu X; He Y; Wang J; Zhao S; Shao P; Wang F; Xie Z; Chen X; Yang W
    Different reproductive stages of mammals involve complex biological processes, and the intestinal microbiota, as an endocrine organ or an “invisible organ,” is involved in the regulation of hormone levels, immune function, and metabolism. However, the effects of the rumen microbiota, its metabolites, and blood metabolites on the reproductive performance of ruminants remain unclear. This study revealed that the Prevotella abundance increased significantly during pregnancy (P < 0.01); the Fibrobacter abundance increased significantly during lactation (P < 0.05); and rumen microbial carbohydrate metabolism, glucose biosynthesis, and metabolic functions were significantly enriched during pregnancy (P < 0.05). Microbial metabolic profile analysis showed that the differentially abundant microbial metabolites during pregnancy and lactation were mainly enriched in the biosynthesis of ubiquinone and other terpenoid quinones, and there was a certain correlation with the microbiota. Among them, sapindoside A was increased during pregnancy, nicotinamide riboside and β-cryptoxanthin were reduced during pregnancy, and L-tryptophan was significantly increased during lactation. In addition, the volatile fatty acid levels in lactation were significantly higher than those in non-pregnancy and pregnancy (P < 0.05), and the NH3-N content during pregnancy was significantly higher than that during lactation and non-pregnancy (P < 0.05). Moreover, there were differences in the serum metabolite levels at different reproductive stages, and similar metabolites existed when comparing the rumen metabolites, which were mainly enriched in arachidonic acid metabolism, vitamin B6 metabolism, and ABC transporter protein, resulting in significantly higher serum IgA and IgM levels during lactation than during non-pregnancy and pregnancy (P < 0.05).
  • Item
    Age Differences in Ileum Microbiota Density: VFAs and Their Transport-Related Gene Interactions in Tibetan Sheep
    (MDPI (Basel, Switzerland), 2024-10-03) Wang F; Sha Y; He Y; Liu X; Chen X; Yang W; Chen Q; Gao M; Huang W; Wang J; Hao Z; Wang L; Yang F
    Microbiota density plays an important role in maintaining host metabolism, immune function, and health, and age has a specific effect on the composition of intestinal microbiota. Therefore, the age-specific effects of age differences on the structure and function of the ileum microbiota in Tibetan sheep were investigated by determining the density of the ileum microbiota, the content of VFAs, and the expression levels of their transporter-related genes at different ages. The results showed that the contents of acetic acid and propionic acid in the ileum of Tibetan sheep in the 1.5-year-old group were significantly higher (p < 0.05) than those in other age groups, and that the contents of total VFAs were also significantly higher (p < 0.05) than those in other age groups. The relative densities of ileum Rf, Ra, and Fs were significantly higher in the 1.5-year-old group than in the other age groups (p < 0.05). The ileum epithelial VFAs transport-related genes AE2, MCT-4, and NHE1 had the highest expression in the 1.5-year-old group, and the expression of DRA was significantly lower in the 1.5-year-old group than in the 6-year-old group (p < 0.05). Correlation analysis showed that Cb, Sr, and Tb were significantly positively correlated with butyric acid concentration (p < 0.05) and negatively correlated with acetic acid, but the difference was not significant (p > 0.05); MCT-1, MCT-4, and AE2 were significantly positively correlated (p < 0.05) with acetic, propionic, and isobutyric acid concentrations; NHE1, NHE2, and MCT-4 were highly significantly positively correlated (p < 0.01) with Romboutsia and unclassified_Peptostreptococcaceae, while acetic acid was significantly positively correlated (p < 0.05) with NK4A214_group; Romboutsia, and unclassified_Peptostreptococcaceae were significantly positively correlated (p < 0.05). Therefore, compared with other ages, the 1.5-year-old Tibetan sheep had a stronger fermentation and metabolic capacity in the ileum under traditional grazing conditions on the plateau, which could provide more energy for Tibetan sheep during plateau acclimatization.
  • Item
    Study of the Interactions between Muscle Fatty Acid Composition, Meat Quality-Related Genes and the Ileum Microbiota in Tibetan Sheep at Different Ages.
    (MDPI (Basel, Switzerland), 2024-02-23) Wang F; Sha Y; Liu X; He Y; Hu J; Wang J; Li S; Shao P; Chen X; Yang W; Chen Q; Gao M; Huang W; Panea B
    The intestinal microbiota of ruminants is an important factor affecting animal production and health. Research on the association mechanism between the intestinal microbiota and meat quality of ruminants will play a positive role in understanding the formation mechanism of meat quality in ruminants and improving production efficiency. In this study, the fatty acid composition and content, expression of related genes, and structural characteristics of the ileum microbiota of ewes of Tibetan sheep at different ages (4 months, 1.5 years, 3.5 years, and 6 years) were detected and analyzed. The results revealed significant differences in fatty acid composition and content in the muscle of Tibetan sheep at different ages (p < 0.05); in addition, the content of MUFAs in the longissimus dorsi muscle and leg muscle was higher. Similarly, the expressions of muscle-related genes differed among the different age groups, and the expression of the LPL, SCD, and FABP4 genes was higher in the 1.5-year-old group. The ileum microbiota diversity was higher in the 1.5-year-old group, the Romboutsia abundance ratio was significantly higher in the 1.5-year-old group (p < 0.05), and there was a significant positive correlation with oleic acid (C18:1n9c) (p < 0.05). In conclusion, the content of beneficial fatty acids in the longissimus dorsi muscle and leg muscle of Tibetan sheep was higher at 1.5 years of age, and the best slaughter age was 1.5 years. This study provides a reference for in-depth research on the mechanism of the influence of the gut microbiota on meat quality and related regulation.
  • Item
    Multi-omics revealed rumen microbiota metabolism and host immune regulation in Tibetan sheep of different ages
    (Frontiers Media S.A., 2024-02-13) Sha Y; Liu X; He Y; Zhao S; Hu J; Wang J; Li W; Shao P; Wang F; Chen X; Yang W; Xie Z; Chen Z
    The rumen microbiota and metabolites play an important role in energy metabolism and immune regulation of the host. However, the regulatory mechanism of rumen microbiota and metabolite interactions with host on Tibetan sheep's plateau adaptability is still unclear. We analyzed the ruminal microbiome and metabolome, host transcriptome and serum metabolome characteristics of Tibetan sheep at different ages. Biomarkers Butyrivibrio, Lachnospiraceae_XPB1014_group, Prevotella, and Rikenellaceae_RC9_gut_group were found in 4 months, 1.5 years, 3.5 years, and 6 years Tibetan sheep, respectively. The rumen microbial metabolites were mainly enriched in galactose metabolism, unsaturated fatty acid biosynthesis and fatty acid degradation pathways, and had significant correlation with microbiota. These metabolites further interact with mRNA, and are co-enriched in arginine and proline metabolism, metabolism of xenobiotics by cytochrome P450, propanoate metabolism, starch and sucrose metabolism, gap junction pathway. Meanwhile, serum metabolites also have a similar function, such as chemical carcinogenesis - reactive oxygen species, limonene and pinene degradation, and cutin, suberine and wax biosynthesis, thus participating in the regulation of the body's immune and energy-related metabolic processes. This study systematically revealed that rumen microbiota, metabolites, mRNA and serum metabolites of Tibetan sheep were involved in the regulation of fermentation metabolic function and immune level of Tibetan sheep at different ages, which provided a new perspective for plateau adaptability research of Tibetan sheep at different ages.
  • Item
    The relationship between hair metabolites, air pollution exposure and gestational diabetes mellitus: A longitudinal study from pre-conception to third trimester.
    (Frontiers Media S.A., 2022-12-02) Chen X; Zhao X; Jones MB; Harper A; de Seymour JV; Yang Y; Xia Y; Zhang T; Qi H; Gulliver J; Cannon RD; Saffery R; Zhang H; Han T-L; Baker PN; Zhou N
    BACKGROUND: Gestational diabetes mellitus (GDM) is a metabolic condition defined as glucose intolerance with first presentation during pregnancy. Many studies suggest that environmental exposures, including air pollution, contribute to the pathogenesis of GDM. Although hair metabolite profiles have been shown to reflect pollution exposure, few studies have examined the link between environmental exposures, the maternal hair metabolome and GDM. The aim of this study was to investigate the longitudinal relationship (from pre-conception through to the third trimester) between air pollution exposure, the hair metabolome and GDM in a Chinese cohort. METHODS: A total of 1020 women enrolled in the Complex Lipids in Mothers and Babies (CLIMB) birth cohort were included in our study. Metabolites from maternal hair segments collected pre-conception, and in the first, second, and third trimesters were analysed using gas chromatography-mass spectrometry (GC-MS). Maternal exposure to air pollution was estimated by two methods, namely proximal and land use regression (LUR) models, using air quality data from the air quality monitoring station nearest to the participant's home. Logistic regression and mixed models were applied to investigate associations between the air pollution exposure data and the GDM associated metabolites. RESULTS: Of the 276 hair metabolites identified, the concentrations of fourteen were significantly different between GDM cases and non-GDM controls, including some amino acids and their derivatives, fatty acids, organic acids, and exogenous compounds. Three of the metabolites found in significantly lower concentrations in the hair of women with GDM (2-hydroxybutyric acid, citramalic acid, and myristic acid) were also negatively associated with daily average concentrations of PM2.5, PM10, SO2, NO2, CO and the exposure estimates of PM2.5 and NO2, and positively associated with O3. CONCLUSIONS: This study demonstrated that the maternal hair metabolome reflects the longitudinal metabolic changes that occur in response to environmental exposures and the development of GDM.
  • Item
    Unique rumen micromorphology and microbiota-metabolite interactions: features and strategies for Tibetan sheep adaptation to the plateau.
    (Frontiers Media S.A., 2024-10-09) Chen Q; Sha Y; Liu X; He Y; Chen X; Yang W; Gao M; Huang W; Wang J; He J; Wang L; Zhang L
    The rumen microbiota-a symbiont to its host and consists of critical functional substances-plays a vital role in the animal body and represents a new perspective in the study of adaptive evolution in animals. This study used Slide Viewer slicing analysis system, gas chromatography, RT-qPCR and other technologies, as well as 16S and metabolomics determination methods, to measure and analyze the microstructure of rumen epithelium, rumen fermentation parameters, rumen transport genes, rumen microbiota and metabolites in Tibetan sheep and Hu sheep. The results indicate that the rumen nipple height and cuticle thickness of Tibetan sheep are significantly greater than those of Hu sheep (p < 0.01) and that the digestion and absorption of forage are greater. The levels of carbohydrate metabolism, lipid metabolism, and protein turnover were increased in Tibetan sheep, which enabled them to ferment efficiently, utilize forage, and absorb metabolic volatile fatty acids (VFAs). Tibetan sheep rumen metabolites are related to immune function and energy metabolism, which regulate rumen growth and development and gastrointestinal homeostasis. Thus, compared with Hu sheep, Tibetan sheep have more rumen papilla and cuticle corneum, and the synergistic effect of the microbiota and its metabolites is a characteristic and strategy for adapting to high-altitude environments.
  • Item
    Supplementation with Astragalus Root Powder Promotes Rumen Microbiota Density and Metabolome Interactions in Lambs
    (MDPI (Basel, Switzerland), 2024-03-02) Shao P; Sha Y; Liu X; He Y; Wang F; Hu J; Wang J; Li S; Chen X; Yang W; Chen Q; Gao M
    The gut microbiota is highly symbiotic with the host, and the microbiota and its metabolites are essential for regulating host health and physiological functions. Astragalus, as a feed additive, can improve animal immunity. However, the effects of Astragalus root powder on the rumen microbiota and their metabolites in lambs are not apparent. In this study, thirty healthy Hu sheep lambs with similar body weights (17.42 ± 2.02 kg) were randomly selected for the feeding experiment. Lambs were fed diets supplemented with 0.3% Astragalus root powder, and the rumen microbiota density and metabolome were measured to determine the effects of Astragalus on the health of lambs in the rumen. The results showed that the relative abundance of Butyrivibrio fibrisolvens (Bf), Ruminococcus flavefaciens (Rf), Succiniclasticum (Su), and Prevotella (Pr) in the rumen was increased in the Astragalus group (p < 0.01), and metabolic profiling showed that the metabolites, such as L-lyrosine and L-leucine, were upregulated in the Astragalus group (p < 0.01). KEGG functional annotation revealed that upregulated metabolites were mainly enriched in the pathways of amino acid metabolism, lipid metabolism, fatty acid biosynthesis, and bile secretion in the Astragalus group, and downregulated metabolites were enriched in the pathways of methane metabolism and other pathways. Correlation analysis revealed that butyric acid was positively correlated with Roseburia and Blautia (p < 0.05) and negatively correlated with Desulfovibrio (p < 0.05). Thus, by analyzing the interactions of Astragalus root powder with the density of rumen microorganisms and their metabolites in lambs, it was shown that Astragalus root powder could improve the structure of rumen microbiota and their metabolites and then participate in the regulation of amino acid metabolism, lipid metabolism, immune metabolism, and other pathways to improve the efficiency of energy absorption of the lambs.
  • Item
    Body appreciation around the world: Measurement invariance of the Body Appreciation Scale-2 (BAS-2) across 65 nations, 40 languages, gender identities, and age.
    (Elsevier B.V., 2023-08-13) Swami V; Tran US; Stieger S; Aavik T; Ranjbar HA; Adebayo SO; Afhami R; Ahmed O; Aimé A; Akel M; Halbusi HA; Alexias G; Ali KF; Alp-Dal N; Alsalhani AB; Álvares-Solas S; Amaral ACS; Andrianto S; Aspden T; Argyrides M; Aruta JJBR; Atkin S; Ayandele O; Baceviciene M; Bahbouh R; Ballesio A; Barron D; Bellard A; Bender SS; Beydağ KD; Birovljević G; Blackburn M-È; Borja-Alvarez T; Borowiec J; Bozogáňová M; Bratland-Sanda S; Browning MHEM; Brytek-Matera A; Burakova M; Çakır-Koçak Y; Camacho P; Camilleri VE; Cazzato V; Cerea S; Chaiwutikornwanich A; Chaleeraktrakoon T; Chambers T; Chen Q-W; Chen X; Chien C-L; Chobthamkit P; Choompunuch B; Compte EJ; Corrigan J; Cosmas G; Cowden RG; Czepczor-Bernat K; Czub M; da Silva WR; Dadfar M; Dalley SE; Dany L; Datu JAD; Berbert de Carvalho PH; Coelho GLDH; De Jesus AOS; Debbabi SH; Dhakal S; Di Bernardo F; Dimitrova DD; Dion J; Dixson B; Donofrio SM; Drysch M; Du H; Dzhambov AM; El-Jor C; Enea V; Eskin M; Farbod F; Farrugia L; Fian L; Fisher ML; Folwarczny M; Frederick DA; Fuller-Tyszkiewicz M; Furnham A; García AA; Geller S; Ghisi M; Ghorbani A; Martinez MAG; Gradidge S; Graf S; Grano C; Gyene G; Hallit S; Hamdan M; Handelzalts JE; Hanel PHP; Hawks SR; Hekmati I; Helmy M; Hill T; Hina F; Holenweger G; Hřebíčková M; Ijabadeniyi OA; Imam A; İnce B; Irrazabal N; Jankauskiene R; Jiang D-Y; Jiménez-Borja M; Jiménez-Borja V; Johnson EM; Jovanović V; Jović M; Jović M; Junqueira ACP; Kahle L-M; Kantanista A; Karakiraz A; Karkin AN; Kasten E; Khatib S; Khieowan N; Kimong PJ; Kiropoulos L; Knittel J; Kohli N; Koprivnik M; Kospakov A; Król-Zielińska M; Krug I; Kuan G; Kueh YC; Kujan O; Kukić M; Kumar S; Kumar V; Lamba N; Lauri MA; Laus MF; LeBlanc LA; Lee HJ; Lipowska M; Lipowski M; Lombardo C; Lukács A; Maïano C; Malik S; Manjary M; Baldó LM; Martinez-Banfi M; Massar K; Matera C; McAnirlin O; Mebarak MR; Mechri A; Meireles JFF; Mesko N; Mills J; Miyairi M; Modi R; Modrzejewska A; Modrzejewska J; Mulgrew KE; Myers TA; Namatame H; Nassani MZ; Nerini A; Neto F; Neto J; Neves AN; Ng S-K; Nithiya D; O J; Obeid S; Oda-Montecinos C; Olapegba PO; Olonisakin TT; Omar SS; Örlygsdóttir B; Özsoy E; Otterbring T; Pahl S; Panasiti MS; Park Y; Patwary MM; Pethö T; Petrova N; Pietschnig J; Pourmahmoud S; Prabhu VG; Poštuvan V; Prokop P; Ramseyer Winter VL; Razmus M; Ru T; Rupar M; Sahlan RN; Hassan MS; Šalov A; Sapkota S; Sarfo JO; Sawamiya Y; Schaefer K; Schulte-Mecklenbeck M; Seekis V; Selvi K; Sharifi M; Shrivastava A; Siddique RF; Sigurdsson V; Silkane V; Šimunić A; Singh G; Slezáčková A; Sundgot-Borgen C; Ten Hoor G; Tevichapong P; Tipandjan A; Todd J; Togas C; Tonini F; Tovar-Castro JC; Trangsrud LKJ; Tripathi P; Tudorel O; Tylka TL; Uyzbayeva A; Vally Z; Vanags E; Vega LD; Vicente-Arruebarrena A; Vidal-Mollón J; Vilar R; Villegas H; Vintilă M; Wallner C; White MP; Whitebridge S; Windhager S; Wong KY; Yau EK; Yamamiya Y; Yeung VWL; Zanetti MC; Zawisza M; Zeeni N; Zvaríková M; Voracek M
    The Body Appreciation Scale-2 (BAS-2) is a widely used measure of a core facet of the positive body image construct. However, extant research concerning measurement invariance of the BAS-2 across a large number of nations remains limited. Here, we utilised the Body Image in Nature (BINS) dataset - with data collected between 2020 and 2022 - to assess measurement invariance of the BAS-2 across 65 nations, 40 languages, gender identities, and age groups. Multi-group confirmatory factor analysis indicated that full scalar invariance was upheld across all nations, languages, gender identities, and age groups, suggesting that the unidimensional BAS-2 model has widespread applicability. There were large differences across nations and languages in latent body appreciation, while differences across gender identities and age groups were negligible-to-small. Additionally, greater body appreciation was significantly associated with higher life satisfaction, being single (versus being married or in a committed relationship), and greater rurality (versus urbanicity). Across a subset of nations where nation-level data were available, greater body appreciation was also significantly associated with greater cultural distance from the United States and greater relative income inequality. These findings suggest that the BAS-2 likely captures a near-universal conceptualisation of the body appreciation construct, which should facilitate further cross-cultural research.
  • Item
    Pucciniastrum minimum is the causal agent of blueberry leaf rust on different Vaccinium species in Hawke’s Bay, New Zealand
    (Springer Nature on behalf of the Australasian Plant Pathology Society Inc, 2023-03-01) Chen X; Mesarich CH; Kerckhoffs H; Hutchins D; Sofkova-Bobcheva S
    Blueberry leaf rust has become a prevalent disease in New Zealand blueberry production. To identify the pathogen responsible for this disease in the Hawke’s Bay region of New Zealand, leaves showing signs or symptoms of rust infection were collected from three blueberry cultivars (‘Centra Blue’ [Rabbiteye], ‘Georgia Dawn’ [Southern Highbush] and ‘Nui’ [Northern Highbush]) and the pathogen subjected to morphological characterization using both scanning electron and bright-field microscopy. Meanwhile, genomic DNA was extracted from urediniospores of infected leaves collected from cultivar ‘Rahi’ (Rabbiteye) and the Internal Transcribed Spacer (ITS) region was sequenced and compared to the corresponding nucleotide sequence of known rust pathogens. Results from both experiments indicated that Pucciniastrum minimum (syn. Thekopsora minima) was the causal agent of blueberry leaf rust disease in Hawke’s Bay. Next, the level of disease caused by P. minimum was quantified on 23 blueberry cultivars in this region during the 2019 blueberry production season. Here, a total of 20 leaves selected from each cultivar were continually monitored, and the lesion area was calculated using ImageJ based on images taken in the field. Based on this analysis, all leaves were found to be infected by the rust pathogen. However, disease intensity, as a function of the ‘area under the disease progress curve’ (AUDPC) value, was found to be different. This suggests that certain cultivars display a lower disease intensity during the harvest season. Further field assessment covering a whole growing cycle will give a better understanding about blueberry leaf rust infection on these cultivars.