Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
5 results
Search Results
Item Impact of thermosonication at neutral pH on the structural characteristics of faba bean protein isolate dispersions and their physicochemical and techno-functional properties(Elsevier Ltd, 2024-09) Hu Y; Cheng L; Gilbert EP; Lee SJ; Yang ZThe effect of thermosonication (TS) (90 °C, 10–30 min) on faba bean protein isolate (FPI) at pH 7 was investigated. The microstructural and techno-functional properties of TS-treated FPI were compared with native FPI or FPI treated with conventional prolonged heating (CH, up to 8 h) at 90 °C. TS treatment effectively converted FPI to amorphous aggregates containing predominant β-sheet secondary structures, as determined by Thioflavin T (ThT) fluorescence and circular dichroism (CD). According to sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), these amorphous aggregates could be formed by disulfide bonds. Additionally, TS treatment is efficient in disrupting large protein aggregates of FPI, thus improving their solubility. Both TS and CH treatments induced formation of viscoelastic FPI hydrogels, whose gel strength depends on the type and time of treatment. Hydrogels formation is likely to arise from the entanglement and interaction of protein aggregates as revealed by small angle neutron scattering (SANS) and scanning electron microscopy (SEM). TS-treated FPI was also used to prepare O/W emulsions and whose structural and physical properties were compared with those stabilised by untreated FPI. At all oil volume fractions (φ = 0.2, 0.5, and 0.7) and FPI concentrations (1, 3, and 5 wt %), emulsions stabilised by TS-treated FPI exhibited smaller oil droplet size, greater mechanical strength and superior stability compared to those stabilised by untreated FPI. The study suggests that TS treatment is promising in improving techno-functional properties of FPI; further studies are needed to exploit TS-treated plant proteins as a novel food ingredient in food product development.Item Impact of Ultrasound Emulsification on the Physicochemical Properties of Emulsions Stabilised by Quinoa Protein Isolates at Different pHs(Springer Science+Business Media, LLC, 2024-03) Yang Z; Cheng LUltrasonication (20 kHz, 19.9 W/10 mL sample) was used to form O/W emulsions stabilised by quinoa protein isolate (QPI) particles at 3 wt%. Effects of pH (3, 5, 7, 9) and oil volume fractions (20%, 40%, and 60%) on rheological properties and microstructural characteristics of emulsions were investigated. All emulsions show viscoelastic behaviours and form a network structure comprising aggregated oil droplets and QPI particles. Emulsions stabilised by QPI at pH 5 showed largest droplet sizes and lowest gel strength due to extensive aggregation of proteins around the isoelectric point (pI ~ 4.5). The gel strength (G´(1 Hz)) were enhanced when the oil volume fraction increased and reached ~ 1100–1350 Pa at 60% oil volume fraction at different pH. This could be attributed to a tighter packing of oil droplets at 60% oil. Confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM) revealed that interdroplets bridging and voids filling of QPI particles between oil droplets are critical in formation of aggregated emulsions network. Emulsions stabilised by QPI at pH 7 and 9 possessed thinner interfacial layers compared to those at pH 3 and 5. Finally, this study shows a potential of using ultrasonication to prepare gel-like emulsions stabilised by QPI, broadening applications of quinoa proteins in making dairy substitutes with semi-solid textural characteristics.Item Formation and characterisation of concentrated emulsion gels stabilised by faba bean protein isolate and its applications for 3D food printing(Elsevier BV, 2023-08-20) Hu Y; Cheng L; Lee SJ; Yang ZConcentrated emulsions were prepared at a fixed oil concentration (50 wt%) using faba bean protein isolates (FPI) as an emulsifier and texturizer. Effects of FPI concentration (1, 3 and 5 wt%; at pH7), pH (pH 3, 5, 7, and 9; 3 wt%) and addition of salts (200 mM NaCl and 40 mM CaCl2; at 3 wt% FPI and pH 7) on the emulsion formation were studied. The oil droplet size and microstructural characteristics were examined by static light scattering and confocal laser scanning microscopy (CLSM), and the viscoelastic behaviours of emulsions were characterised by oscillatory rheology. At all different FPI concentrations, the emulsions formed viscoelastic gels with different gel strengths and stability due to network formation and interactions between jammed oil droplets and protein aggregates. The oil droplet size, rheological properties, and 3D printability of emulsions were not significantly changed by the presence of salts. The storage modulus G′ (1 Hz) values were higher at higher FPI concentrations, and higher pH values (i.e., pH 7 and 9) as the droplet size was smaller and the droplet packing was more compact, resulting in a better 3D printing performance. Furthermore, the heat treatment (90 °C for 30 min) remarkedly improved gel strength and the 3D printability because of protein denaturation and oil droplet aggregation. This finding demonstrated that the emulsion gel formed with FPI was tuneable for food 3D printing. Most of samples displayed high printing precision with great self-supporting capability, which may find potential applications in creating specialised diet.Item Limited Alcalase hydrolysis improves the thermally-induced gelation of quinoa protein isolate (QPI) dispersions(Elsevier BV, 2022-11-01) Wang X; Cheng L; Wang H; Yang ZGelation is critical in many food applications of plant proteins. Herein, limited hydrolysis by Alcalase was used to promote thermally induced gelation of quinoa protein isolates (QPI). Mechanical properties of various QPI gels were characterised by small and large oscillatory shear deformation rheology while the microstructural features were observed by confocal laser scanning microscopy (CLSM). Both the gel strength and microstructure are strongly related to the hydrolysis time. The maximum gel strength (∼100 Pa) was achieved after Alcalase hydrolysis for 1 min, which was ∼20 folds higher than that of untreated QPI. Extended hydrolysis up to 5 min progressively decreased the gel strength. A string-like interconnected protein network was formed after proteolysis. The change of gel strength with hydrolysis time correlated well to the Gʹ 20°C/Gʹ 90°C value and results of intrinsic fluorescence and surface hydrophobicity. The Gʹ 20°C/Gʹ 90°C value is sensitive to hydrogen bonds formation while the intrinsic fluorescence and surface hydrophobicity are associated with protein unfolding and exposure of hydrophobic groups. Therefore, both hydrogen bonding and hydrophobic interactions are critical in improving the gel strength of QPI hydrolysates. Finally, FTIR analysis revealed that protein secondary structures are affected by the proteolysis and formation of inter-molecular hydrogen bonds between polypeptides. This study provides an efficient strategy for improving thermally induced gelation of QPI and enables a deep understanding of QPI gelation mechanism induced by Alcalase hydrolysis.Item Impact of incorporations of various polysaccharides on rheological and microstructural characteristics of heat-induced quinoa protein isolate gels(Springer Science+Business Media, LLC, 2022-09) Patole S; Cheng L; Yang ZThis study aimed to investigate the properties of heat-induced gels (85 °C for 30 min) of quinoa protein isolate (QPI) in the presence and absence of various polysaccharides including guar gum (GG), locust bean gum (LBG), and xanthan gum (XG) at pH 7. For this purpose, samples with three gum concentrations (0.05, 0.1, and 0.2 wt%) at a fixed QPI concentration (10 wt%) and a fixed ionic strength (50 mM NaCl) were studied in terms of their gelation behaviour, small and large deformation rheological properties, water holding capabilities, and microstructural characteristics. Rheological measurements revealed that all polysaccharides incorporation could improve gel strength (complex modulus, G*) and breaking stress, accelerate gel formations, and more stiffer gels were obtained at greater polysaccharide concentrations. The XG exhibited the most gel strengthening effect followed by LBG and GG. Incorporation of 0.2 wt% XG led to a 15 folds increase in G* compared to the control. Confocal laser scanning microscopy observation revealed that the polysaccharides also altered gel microstructures, with the gels containing XG showing the most compact gel structures. The findings of this study may provide useful information for the fabrication of novel QPI based food gel products with improved texture.
