Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
Search Results
Item Hoof lesions in partly housed pasture-based dairy cows(Elsevier Inc and Fass Inc on behalf of the American Dairy Science Association, 2022-11) Browne N; Hudson CD; Crossley RE; Sugrue K; Huxley JN; Conneely MLameness is a symptom of a painful disorder affecting the limbs, which impacts dairy cow welfare and productivity. Lameness is primarily caused by hoof lesions. The prevalence of different lesion types can differ depending on environmental conditions and farm management practices. The aims of this observational study were to establish the cow-level and herd-level lesion prevalence during both housing and grazing periods in a partly housed, pasture-based system, establish the prevalence of lesions always associated with pain (“alarm” lesion), identify the lesions associated with a higher lameness score, determine relationships between lesions, and identify risk factors for digital dermatitis. On 98 farms during the grazing period and on 74 of the same farms during the housing period, every cow was lameness scored (0–3 lameness scoring scale), and the hind hooves of lame cows (score 2 and 3) were examined (maximum 20 cows per visit) and the prevalence of each lesion type recorded. To gather data on potential predictors for the risk factor analysis, a questionnaire with the farmer was conducted on lameness management practices and infrastructure measurements were taken at each visit. Cow-level data were also collected (e.g., parity, breed, milk yield, and so on). Noninfectious lesions were found to be more prevalent than infectious lesions in this system type. The most prevalent lesion types during both grazing and housing periods were white line separation, sole hemorrhages and overgrown claws; all remaining lesions had a cow-level prevalence of less than 15%. The cow-level prevalence of alarm lesions was 19% during the grazing period and 25% during the housing period; the most prevalent alarm lesion was sole ulcers during both periods. We found significantly more foreign bodies within the hoof sole (grazing = 14%, housing = 7%) and overgrown claws (grazing = 71%, housing = 55%) during the grazing period compared with the housing period. Cows with foul of the foot, sole ulcer, white line abscess, toe necrosis or an amputated claw had higher odds of being more severely lame, compared with mildly lame. The strongest correlation between lesions were between toe necrosis and digital dermatitis (r = 0.40), overgrown claws and corkscrew claws (r = 0.33), and interdigital hyperplasia and digital dermatitis (r = 0.31) at herd level. At the cow level, the strongest correlation was between overgrown claws and corkscrew claws (r = 0.27), and digital dermatitis and heel erosion (r = 0.22). The farmers' perception of the presence of digital dermatitis (and lameness) was significantly correlated with the actual presence of digital dermatitis recorded. Additional risk factors for the presence of digital dermatitis were cow track and verge width near the collecting yard, and stone presence on the cow tracks. Results from this study help further our understanding of the causes of lameness in partly housed, pasture-based dairy cows, and can be used to guide prevention and treatment protocols.Item Cow- and herd-level risk factors for lameness in partly housed pasture-based dairy cows(Elsevier Inc and Fass Inc on behalf of the American Dairy Science Association, 2022-02) Browne N; Hudson CD; Crossley RE; Sugrue K; Kennedy E; Huxley JN; Conneely MLameness in dairy cows is a major animal welfare concern and has substantial economic impact through reduced production and fertility. Previous risk factor analyses have focused on housed systems, rather than those where cows were grazed for the majority of the year and housed only for the winter period. Therefore, the aim of this observational study was to identify a robust set of cow-level and herd-level risk factors for lameness in a pasture-based system, based on predictors from the housing and grazing periods. Ninety-nine farms were visited during the grazing period (April 2019–September 2019), and 85 farms were revisited during the housing period (October 2019–February 2020). At each visit, all lactating cows were scored for lameness (0 = good mobility, 1 = imperfect mobility, 2 = impaired mobility, 3 = severely impaired mobility), and potential herd-level risk factors were recorded through questionnaires and infrastructure measurements. Routine cow-level management data were also collected. Important risk factors for lameness were derived though triangulation of results from elastic net regression, and from logistic regression model selection using modified Bayesian information criterion. Both selection methods were implemented using bootstrapping. This novel approach has not previously been used in a cow-level or herd-level risk factor analysis in dairy cows, to the authors' knowledge. The binary outcome variable was lameness status, whereby cows with a lameness score of 0 or 1 were classed as non-lame and cows with a score of 2 or 3 were classed as lame. Cow-level risk factors for increased lameness prevalence were age and genetic predicted transmitting ability for lameness. Herd-level risk factors included farm and herd size, stones in paddock gateways, slats on cow tracks near the collecting yard, a sharper turn at the parlor exit, presence of digital dermatitis on the farm, and the farmers' perception of whether lameness was a problem on the farm. This large-scale study identified the most important associations between risk factors and lameness, based on the entire year (grazing and housing periods), providing a focus for future randomized clinical trials.
