Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    Population structure and pathogen interaction of Escherichia coli in freshwater: Implications of land-use for water quality and public health in Aotearoa New Zealand.
    (John Wiley & Sons, Inc., 2024-08-02) Cookson AL; Devane M; Marshall JC; Moinet M; Gardner A; Collis RM; Rogers L; Biggs PJ; Pita AB; Cornelius AJ; Haysom I; Hayman DTS; Gilpin BJ; Leonard M
    Freshwater samples (n = 199) were obtained from 41 sites with contrasting land-uses (avian, low impact, dairy, urban, sheep and beef, and mixed sheep, beef and dairy) and the E. coli phylotype of 3980 isolates (20 per water sample enrichment) was determined. Eight phylotypes were identified with B1 (48.04%), B2 (14.87%) and A (14.79%) the most abundant. Escherichia marmotae (n = 22), and Escherichia ruysiae (n = 1), were rare (0.68%) suggesting that these environmental strains are unlikely to confound water quality assessments. Phylotypes A and B1 were overrepresented in dairy and urban sites (p < 0.0001), whilst B2 were overrepresented in low impact sites (p < 0.0001). Pathogens ((Salmonella, Campylobacter, Cryptosporidium or Giardia) and the presence of diarrhoeagenic E. coli-associated genes (stx and eae) were detected in 89.9% (179/199) samples, including 80.5% (33/41) of samples with putative non-recent faecal inputs. Quantitative PCR to detect microbial source tracking targets from human, ruminant and avian contamination were concordant with land-use type and E. coli phylotype abundance. This study demonstrated that a potential recreational health risk remains where pathogens occurred in water samples with low E. coli concentration, potential non-recent faecal sources, low impact sites and where human, ruminant and avian faecal sources were absent.
  • Item
    The characterisation of antimicrobial resistant Escherichia coli from dairy calves.
    (Microbiology Society, 2023-08) Mwenifumbo M; Cookson AL; Zhao S; Fayaz A; Browne AS; Benschop J; Burgess SA
    Introduction. Dairy calves, particularly pre-weaned calves have been identified as a common source of multidrug resistant (MDR) Escherichia coli. Gap statement. E. coli strains isolated from dairy calves and the location of their resistance genes (plasmid or chromosomal) have not been well characterised. Aim. To characterise the phenotypic and genotypic features as well as the population structure of antimicrobial-resistant E. coli isolated from calves located on dairy farms that feed waste-milk to their replacement calves. Methodology. Recto-anal swab enrichments from 40 dairy calves (≤ 14 days old) located on four dairy farms were examined for tetracycline, streptomycin, ciprofloxacin, and third-generation cephalosporin resistant E. coli. Whole genome sequencing was performed using both short- and long-read technologies on selected antimicrobial resistant E. coli. Results. Fifty-eight percent (23/40) of calves harboured antimicrobial resistant E. coli: 43 % (17/40) harboured tetracycline resistant, and 23 % (9/40) harboured chromosomal mediated AmpC producing E. coli. Whole genome sequencing of 27 isolates revealed five sequence types, with ST88 being the dominant ST (17/27, 63 % of the sequenced isolates) followed by ST1308 (3/27, 11 %), along with the extraintestinal pathogenic E. coli lineages ST69 (3/27, 11 %), ST10 (2/27, 7 %), and ST58 (2/27, 7 %). Additionally, 16 isolates were MDR, harbouring additional resistance genes that were not tested phenotypically. Oxford Nanopore long-read sequencing technologies enabled the location of multiple resistant gene cassettes in IncF plasmids to be determined. Conclusion. Our study identified a high incidence of tetracycline and streptomycin-resistant E. coli in dairy calves, and highlighted the presence of multidrug-resistant strains, emphasising the need for further investigation into potential associations with farm management practices.
  • Item
    Whole genome sequence analysis of ESBL-producing Escherichia coli recovered from New Zealand freshwater sites.
    (2022-10) Burgess SA; Moinet M; Brightwell G; Cookson AL
    Extended-spectrum beta lactamase (ESBL)-producing Escherichia coli are often isolated from humans with urinary tract infections and may display a multidrug-resistant phenotype. These pathogens represent a target for a One Health surveillance approach to investigate transmission between humans, animals and the environment. This study examines the multidrug-resistant phenotype and whole genome sequence data of four ESBL-producing E. coli isolated from freshwater in New Zealand. All four isolates were obtained from a catchment with a mixed urban and pastoral farming land-use. Three isolates were sequence type (ST) 131 (CTX-M-27-positive) and the other ST69 (CTX-M-15-positive); a phylogenetic comparison with other locally isolated strains demonstrated a close relationship with New Zealand clinical isolates. Genes associated with resistance to antifolates, tetracyclines, aminoglycosides and macrolides were identified in all four isolates, together with fluoroquinolone resistance in two isolates. The ST69 isolate harboured the bla CTX-M-15 gene on a IncHI2A plasmid, and two of the three ST131 isolates harboured the bla CTX-M-27 genes on IncF plasmids. The last ST131 isolate harboured bla CTX-M-27 on the chromosome in a unique site between gspC and gspD. These data highlight a probable human origin of the isolates with subsequent transmission from urban centres through wastewater to the wider environment.
  • Item
    The epidemiology of AmpC-producing Escherichia coli isolated from dairy cattle faeces on pasture-fed farms.
    (2021-10) Burgess SA; Cookson AL; Brousse L; Ortolani E; Benschop J; Akhter R; Brightwell G; McDougall S
    Introduction. Antibiotic use, particularly amoxicillin-clavulanic acid in dairy farming, has been associated with an increased incidence of AmpC-hyperproducing Escherichia coli.Gap statement. There is limited information on the incidence of AmpC-hyperproducing E. coli from seasonal pasture-fed dairy farms.Aim. We undertook a New Zealand wide cross-sectional study to determine the prevalence of AmpC-producing E. coli carried by dairy cattle.Methodology. Paddock faeces were sampled from twenty-six dairy farms and were processed for the selective growth of both extended-spectrum beta-lactamase (ESBL)- and AmpC-producing E. coli. Whole genome sequence analysis was carried out on 35 AmpC-producing E. coli.Results. No ESBL- or plasmid mediated AmpC-producing E. coli were detected, but seven farms were positive for chromosomal mediated AmpC-hyperproducing E. coli. These seven farms were associated with a higher usage of injectable amoxicillin antibiotics. Whole genome sequence analysis of the AmpC-producing E. coli demonstrated that the same strain (<3 SNPs difference) of E. coli ST5729 was shared between cows on a single farm. Similarly, the same strain (≤15 SNPs difference) of E. coli ST8977 was shared across two farms (separated by approximately 425 km).Conclusion. These results infer that both cow-to-cow and farm-to-farm transmission of AmpC-producing E. coli has occurred.
  • Item
    Prevalence and distribution of extended-spectrum β-lactamase and AmpC-producing Escherichia coli in two New Zealand dairy farm environments.
    (2022) Collis RM; Biggs PJ; Burgess SA; Midwinter AC; Brightwell G; Cookson AL
    Antimicrobial resistance (AMR) is a global threat to human and animal health, with the misuse and overuse of antimicrobials being suggested as the main driver of resistance. In a global context, New Zealand (NZ) is a relatively low user of antimicrobials in animal production. However, the role antimicrobial usage on pasture-based dairy farms, such as those in NZ, plays in driving the spread of AMR within the dairy farm environment remains equivocal. Culture-based methods were used to determine the prevalence and distribution of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Escherichia coli from farm environmental samples collected over a 15-month period from two NZ dairy farms with contrasting management practices. Whole genome sequencing was utilised to understand the genomic epidemiology and antimicrobial resistance gene repertoire of a subset of third-generation cephalosporin resistant E. coli isolated in this study. There was a low sample level prevalence of ESBL-producing E. coli (faeces 1.7%; farm dairy effluent, 6.7% from Dairy 4 and none from Dairy 1) but AmpC-producing E. coli were more frequently isolated across both farms (faeces 3.3% and 8.3%; farm dairy effluent 38.4%, 6.7% from Dairy 1 and Dairy 4, respectively). ESBL- and AmpC-producing E. coli were isolated from faeces and farm dairy effluent in spring and summer, during months with varying levels of antimicrobial use, but no ESBL- or AmpC-producing E. coli were isolated from bulk tank milk or soil from recently grazed paddocks. Hybrid assemblies using short- and long-read sequence data from a subset of ESBL- and AmpC-producing E. coli enabled the assembly and annotation of nine plasmids from six E. coli, including one plasmid co-harbouring 12 antimicrobial resistance genes. ESBL-producing E. coli were infrequently identified from faeces and farm dairy effluent on the two NZ dairy farms, suggesting they are present at a low prevalence on these farms. Plasmids harbouring several antimicrobial resistance genes were identified, and bacteria carrying such plasmids are a concern for both animal and public health. AMR is a burden for human, animal and environmental health and requires a holistic "One Health" approach to address.