Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Fitness of evolving bacterial populations is contingent on deep and shallow history but only shallow history creates predictable patterns
    (The Royal Society, 2022-09-14) Smith CE; Smith ANH; Cooper TF; Moore FB-G
    Long-term evolution experiments have tested the importance of genetic and environmental factors in influencing evolutionary outcomes. Differences in phylogenetic history, recent adaptation to distinct environments and chance events, all influence the fitness of a population. However, the interplay of these factors on a population's evolutionary potential remains relatively unexplored. We tracked the outcome of 2000 generations of evolution of four natural isolates of Escherichia coli bacteria that were engineered to also create differences in shallow history by adding previously identified mutations selected in a separate long-term experiment. Replicate populations started from each progenitor evolved in four environments. We found that deep and shallow phylogenetic histories both contributed significantly to differences in evolved fitness, though by different amounts in different selection environments. With one exception, chance effects were not significant. Whereas the effect of deep history did not follow any detectable pattern, effects of shallow history followed a pattern of diminishing returns whereby fitter ancestors had smaller fitness increases. These results are consistent with adaptive evolution being contingent on the interaction of several evolutionary forces but demonstrate that the nature of these interactions is not fixed and may not be predictable even when the role of chance is small.
  • Item
    Historical Contingency Causes Divergence in Adaptive Expression of the lac Operon
    (Oxford University Press on behalf of The Society for Molecular Biology and Evolution (SMBE), 2021-07) Karkare K; Lai H-Y; Azevedo RBR; Cooper TF; Wittkopp P
    Populations of Escherichia coli selected in constant and fluctuating environments containing lactose often adapt by substituting mutations in the lacI repressor that cause constitutive expression of the lac operon. These mutations occur at a high rate and provide a significant benefit. Despite this, eight of 24 populations evolved for 8,000 generations in environments containing lactose contained no detectable repressor mutations. We report here on the basis of this observation. We find that, given relevant mutation rates, repressor mutations are expected to have fixed in all evolved populations if they had maintained the same fitness effect they confer when introduced to the ancestor. In fact, reconstruction experiments demonstrate that repressor mutations have become neutral or deleterious in those populations in which they were not detectable. Populations not fixing repressor mutations nevertheless reached the same fitness as those that did fix them, indicating that they followed an alternative evolutionary path that made redundant the potential benefit of the repressor mutation, but involved unique mutations of equivalent benefit. We identify a mutation occurring in the promoter region of the uspB gene as a candidate for influencing the selective choice between these paths. Our results detail an example of historical contingency leading to divergent evolutionary outcomes.
  • Item
    From individual behaviors to collective outcomes: fruiting body formation in Dictyostelium as a group-level phenotype
    (Oxford University Press on behalf of the Society for the Study of Evolution, 2023-03-01) Kuzdzal-Fick JJ; Moreno A; Broersma CME; Cooper TF; Ostrowski EA
    Collective phenotypes, which arise from the interactions among individuals, can be important for the evolution of higher levels of biological organization. However, how a group's composition determines its collective phenotype remains poorly understood. When starved, cells of the social amoeba Dictyostelium discoideum cooperate to build a multicellular fruiting body, and the morphology of the fruiting body is likely advantageous to the surviving spores. We assessed how the number of strains, as well as their genetic and geographic relationships to one another, impact the group's morphology and productivity. We find that some strains consistently enhance or detract from the productivity of their groups, regardless of the identity of the other group members. We also detect extensive pairwise and higher-order genotype interactions, which collectively have a large influence on the group phenotype. Whereas previous work in Dictyostelium has focused almost exclusively on whether spore production is equitable when strains cooperate to form multicellular fruiting bodies, our results suggest a previously unrecognized impact of chimeric co-development on the group phenotype. Our results demonstrate how interactions among members of a group influence collective phenotypes and how group phenotypes might in turn impact selection on the individual.