Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
Search Results
Item Increased Dietary Protein to Energy Ratio in Pre-Weaning Lambs Increases Average Daily Gain and Cortical Bone Thickness in the Tibia(MDPI (Basel, Switzerland), 2022-12) Gibson MJ; Adams BR; Back PJ; Dittmer KE; Herath HMGP; Pain SJ; Kenyon PR; Morel PCH; Blair HT; Rogers CWThe objective of this study was to examine if diets differing in crude protein (CP) to metabolizable energy (ME) ratio (CP:ME) pre-weaning altered peripheral quantitative computed tomography (pQCT) measures of bone mass and strength in lambs. The left hind leg of lambs were available at the completion of a trial designed to examine the effect that altering the CP:ME ratio in milk replacer had on growth and body composition of pre-weaned lambs reared artificially. Treatments consisted of either normal commercial milk replacer (CMR, n = 10) containing 240 g/kg CP and 21.89 MJ/kg ME, high protein milk replacer (HPM, n = 9) containing CMR with additional milk protein concentrate to reach 478.7 g/kg CP and 19.15 MJ/kg ME or a mix of normal milk replacer and milk protein concentrate adjusted twice-weekly to match optimal CP:ME requirements (MB, n = 8) based on maintenance plus 300 g/d liveweight gain. At 22 kg live weight, lambs were euthanized and the tibia including the surrounding muscle was collected and scanned using pQCT at the mid-diaphysis. Lambs on the HPM and MB diets had a greater average daily gain (p < 0.01). There were limited differences in bone morphology and muscle mass, though notably the higher protein diets (MB and HPM) were associated with greater cortical thickness (p < 0.05) and, therefore, potentially greater peak bone mass at maturity This finding demonstrates that pre-weaning diets, and the protein content in particular, may influence the developmental potential of long bones and attainment of peak bone mass at maturity.Item The Effect of Artificial Rearing on Live Weight Gain and Bone Morphology of the Tibia in Lambs Prior to Weaning(MDPI (Basel, Switzerland), 2022-03) Gibson MJ; Rogers CW; Pettigrew EJ; Pain SJ; Dittmer KE; Herath HMGP; Back PJ; Leury BJGrowth rates associated with different artificial rearing systems have been thoroughly examined in many species. However, the effect of different rearing systems on bone morphology has not been described. The objective of this study was to examine differences in the bone mass and the relationship of peripheral quantitative computed tomography (pQCT) measures of bone with muscle area of ewe-reared lambs and artificially reared lambs. Lambs were opportunistically collected from a concurrent trial examining changes in ewe mammary glands during lactation. Thirteen lambs were artificially reared while the remaining nine were left on their dam. Measures of stature were taken throughout the six-week trial period. At approximately six weeks of age, the lambs were euthanized and the tibia was collected and scanned using peripheral quantitative computed tomography. Artificially reared lambs had reduced live weight gain and an altered pattern of stature growth. There was no effect of treatment on bone morphology (p > 0.05), but ewe reared lambs had a greater cortical bone content to muscle area ratio than artificially reared lambs (0.06 vs. 0.15, respectively). Differences in growth between ewe reared lambs and artificially reared lambs emphasizes the importance of adequate preweaning nutrition for livestock production systems that routinely use artificial rearing systems.
