Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
Search Results
Item How Visual Design of Severe Weather Outlooks Can Affect Communication and Decision-Making(American Meteorological Society, 2023-10-16) Clive MAT; Doyle EEH; Potter SH; Noble C; Johnston DMMultiday severe weather outlooks can inform planning beyond the hour-to-day windows of warnings and watches. Outlooks can be complex to visualize, as they represent large-scale weather phenomena overlapping across several days at varying levels of uncertainty. Here, we present the results of a survey (n 5 417) that explores how visual varia-bles affect comprehension, inferences, and intended decision-making in a hypothetical scenario with the New Zealand MetService Severe Weather Outlook. We propose that visualization of the time window, forecast area, icons, and uncertainty can influence perceptions and decision-making based on four key findings. First, composite-style outlooks that depict multiple days of weather on one map can lead to biased perceptions of the forecast. When responding to questions about a day for which participants accurately reported there was no severe weather forecast, those who viewed a composite outlook reported higher likelihoods of severe weather occurring, higher levels of concern about travel, and higher likelihoods of changing plans compared to those who viewed outlooks that showed weather for each day on a separate map, suggesting that they perceived the forecast to underrepresent the likelihood of severe weather on that day. Second, presenting uncertainty in an extrinsic way (e.g., “low”) can lead to more accurate estimates of likelihood than intrinsic formats (e.g., hue variation). Third, shaded forecast areas may lead to higher levels of confidence in the forecast than outlined forecast areas. Fourth, inclusion of weather icons can improve comprehension in some conditions. The results demonstrate how visualization can affect decision-making about severe weather and support several evidence-based considerations for effective design of long-term forecasts.Item Where does scientific uncertainty come from, and from whom? Mapping perspectives of natural hazards science advice(Elsevier, 2023-10-01) Doyle EEH; Thompson J; Hill S; Williams M; Paton D; Harrison S; Bostrom A; Becker JThe science associated with assessing natural hazard phenomena and the risks they pose contains many layers of complex and interacting elements, resulting in diverse sources of uncertainty. This creates a challenge for effective communication, which must consider how people perceive that uncertainty. Thus, we conducted twenty-five mental model interviews in Aotearoa New Zealand with participants ranging from scientists to policy writers and emergency managers, and through to the public. The interviews included three phases: an initial elicitation of free thoughts about uncertainty, a mental model mapping activity, and a semi-structured interview protocol to explore further questions about scientific processes and their personal philosophy of science. Qualitative analysis led to the construction of key themes, including: (a) understanding that, in addition to data sources, the ‘actors’ involved can also be sources of uncertainty; (b) acknowledging that factors such as governance and funding decisions partly determine uncertainty; (c) the influence of assumptions about expected human behaviours contributing to “known unknowns'; and (d) the difficulty of defining what uncertainty actually is. Participants additionally highlighted the positive role of uncertainty for promoting debate and as a catalyst for further inquiry. They also demonstrated a level of comfort with uncertainty and advocated for ‘sitting with uncertainty’ for transparent reporting in advice. Additional influences included: an individual's understanding of societal factors; the role of emotions; using outcomes as a scaffold for interpretation; and the complex and noisy communications landscape. Each of these require further investigation to enhance the communication of scientific uncertainty.
