Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item The Use of Triaxial Accelerometers and Machine Learning Algorithms for Behavioural Identification in Domestic Dogs (Canis familiaris): A Validation Study(MDPI (Basel, Switzerland), 2024-09-13) Redmond C; Smit M; Draganova I; Corner-Thomas R; Thomas D; Andrews C; Fullwood DT; Bowden AEAssessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias, making large-scale and rapid implementation challenging. Objective, practical and time effective behaviour measures may be facilitated by remote and automated devices such as accelerometers. This study, therefore, aimed to validate the ActiGraph® accelerometer as a tool for behavioural classification. This study used a machine learning method that identified nine dog behaviours with an overall accuracy of 74% (range for each behaviour was 54 to 93%). In addition, overall body dynamic acceleration was found to be correlated with the amount of time spent exhibiting active behaviours (barking, locomotion, scratching, sniffing, and standing; R2 = 0.91, p < 0.001). Machine learning was an effective method to build a model to classify behaviours such as barking, defecating, drinking, eating, locomotion, resting-asleep, resting-alert, sniffing, and standing with high overall accuracy whilst maintaining a large behavioural repertoire.Item The Use of Triaxial Accelerometers and Machine Learning Algorithms for Behavioural Identification in Domestic Cats (Felis catus): A Validation Study(MDPI (Basel, Switzerland), 2023-08-14) Smit M; Ikurior SJ; Corner-Thomas RA; Andrews CJ; Draganova I; Thomas DG; Vanwanseele BAnimal behaviour can be an indicator of health and welfare. Monitoring behaviour through visual observation is labour-intensive and there is a risk of missing infrequent behaviours. Twelve healthy domestic shorthair cats were fitted with triaxial accelerometers mounted on a collar and harness. Over seven days, accelerometer and video footage were collected simultaneously. Identifier variables (n = 32) were calculated from the accelerometer data and summarized into 1 s epochs. Twenty-four behaviours were annotated from the video recordings and aligned with the summarised accelerometer data. Models were created using random forest (RF) and supervised self-organizing map (SOM) machine learning techniques for each mounting location. Multiple modelling rounds were run to select and merge behaviours based on performance values. All models were then tested on a validation accelerometer dataset from the same twelve cats to identify behaviours. The frequency of behaviours was calculated and compared using Dirichlet regression. Despite the SOM models having higher Kappa (>95%) and overall accuracy (>95%) compared with the RF models (64-76% and 70-86%, respectively), the RF models predicted behaviours more consistently between mounting locations. These results indicate that triaxial accelerometers can identify cat specific behaviours.
