Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
Search Results
Item Mānuka Clones Differ in Their Volatile Profiles: Potential Implications for Plant Defence, Pollinator Attraction and Bee Products(MDPI (Basel, Switzerland), 2022-01) Effah E; Min Tun K; Rangiwananga N; McCormick ACThe New Zealand native plant mānuka (Leptospermum scoparium) is representative of the country’s North and South Islands flora. This species is essential to the growing community of honey producers due to its honey’s antimicrobial and antioxidant properties, attributed to the presence of methylglyoxal (MGO), derived from dihydroxyacetone (DHA) in the nectar. Several clones and cultivars have been selected to optimize DHA production. Still, nothing is known about the volatile emissions of these artificially selected plants. Volatile organic compounds (VOCs) can influence their interactions with the environment, such as pollinator foraging decisions, which may subsequently affect the plants’ products. This study explored the aboveground volatile organic compounds (VOCs) emitted by eight different mānuka genotypes (six clones and two wild cultivars) under field conditions during the spring season. Volatiles were collected using the “push–pull” headspace sampling technique and analyzed using gas chromatography-mass spectrometry (GC-MS). Our results show that mānuka plants emit large amounts of terpenoids, with sesquiterpenes and monoterpenoids being the most abundant groups of compounds. The results also show variation in the total green leaf volatiles, total sesquiterpenes, and specific compounds between genotypes and suggest that artificially selected plants have a significant variation in their chemical profiles. The potential impacts of these results on the plant’s defence, pollinator attraction and bee products are discussed.Item Herbivory and Attenuated UV Radiation Affect Volatile Emissions of the Invasive Weed Calluna vulgaris(MDPI (Basel, Switzerland), 13/07/2020) Effah E; Barrett DP; Peterson PG; Wargent JJ; Potter MA; Holopainen JK; Clavijo McCormick ACalluna vulgaris (heather) is an aggressive invasive weed on the Central Plateau, North Is., New Zealand (NZ), where it encounters different environmental factors compared to its native range in Europe, such as high ultraviolet radiation (UV) and a lack of specialist herbivores. The specialist herbivore Lochmaea suturalis (heather beetle) was introduced from the United Kingdom (UK) in 1996 as a biocontrol agent to manage this invasive weed. Like other plant invaders, a novel environment may be challenging for heather as it adjusts to its new conditions. This process of "adjustment" involves morphological and physiological changes often linked to phenotypic plasticity. The biochemical responses of exotic plants to environmental variables in their invaded range is poorly understood. The production and release of volatile organic compounds (VOCs) is essential to plant communication and highly susceptible to environmental change. This study therefore aimed to explore the VOC emissions of heather in response to different levels of UV exposure, and to feeding damage by L. suturalis. Using tunnel houses clad with UV-selective filters, we measured VOCs produced by heather under NZ ambient, 20% attenuated, and 95% attenuated solar UV treatments. We also compared VOC emissions in the field at adjacent sites where L. suturalis was present or absent. Volatiles produced by the same target heather plants were measured at four different times in the spring and summer of 2018-2019, reflecting variations in beetle's abundance, feeding stage and plant phenology. Heather plants under 95% attenuated UV produced significantly higher amounts of (E)-β-farnesene, decanal, benzaldehyde, and benzeneacetaldehyde compared to 25% attenuated and ambient UV radiation. We also found significant differences in volatiles produced by heather plants in beetle-present versus beetle-absent sites on most sampling occasions. We also recorded a lower number of generalist herbivores on heather at sites where L. suturalis was present. Interactions between invasive plants, a novel environment, and the native communities they invade, are discussed.Item Natural Variation in Volatile Emissions of the Invasive Weed Calluna vulgaris in New Zealand(MDPI (Basel, Switzerland), 21/02/2020) Effah E; Barrett DP; Peterson PG; Godfrey AJR; Potter MA; Holopainen JK; Clavijo McCormick AInvasive plants pose a threat to natural ecosystems, changing the community composition and ecological dynamics. One aspect that has received little attention is the production and emission of volatile organic compounds (VOCs) by invasive plants. Investigating VOCs is important because they are involved in vital ecological interactions such as pollination, herbivory and plant competition. Heather, Calluna vulgaris, is a major invasive weed in New Zealand, especially on the Central Plateau, where it has spread rapidly since its introduction in 1912, outcompeting native species. However, the chemical behaviour of heather in its invaded ranges is poorly understood. We aimed to explore the natural variation in volatile emissions of heather and the biotic and abiotic factors influencing them on the Central Plateau of New Zealand. To this end, foliar volatiles produced by heather at four different sites were collected and analysed using gas chromatography coupled to mass spectrometry. Soil properties, herbivory and other environmental data were also collected at each site to investigate their effects on VOC emissions using generalised linear models (GLMs). Our results reveal significant differences in VOC emissions between sites and suggest that soil nutrients are the main factor accounting for these differences. Herbivory and temperature had only a minor effect, while soil water content had no impact. Further studies are needed to investigate how these variations in the invasive plant's foliar volatiles influence native species.
