Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Genomic epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli from humans and a river in Aotearoa New Zealand.
    (Microbiology Society, 2025-01-10) Gray HA; Biggs PJ; Midwinter AC; Rogers LE; Fayaz A; Akhter RN; Burgess SA
    In Aotearoa New Zealand, urinary tract infections in humans are commonly caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. This group of antimicrobial-resistant bacteria are often multidrug resistant. However, there is limited information on ESBL-producing E. coli found in the environment and their link with human clinical isolates. In this study, we examined the genetic relationship between environmental and human clinical ESBL-producing E. coli and isolates collected in parallel within the same area over 14 months. Environmental samples were collected from treated effluent, stormwater and multiple locations along an Aotearoa New Zealand river. Treated effluent, stormwater and river water sourced downstream of the treated effluent outlet were the main samples that were positive for ESBL-producing E. coli (7/14 samples, 50.0%; 3/6 samples, 50%; and 15/28 samples, 54%, respectively). Whole-genome sequence comparison was carried out on 307 human clinical and 45 environmental ESBL-producing E. coli isolates. Sequence type 131 was dominant for both clinical (147/307, 47.9%) and environmental isolates (11/45, 24.4%). Only one ESBL gene was detected in each isolate. Among the clinical isolates, the most prevalent ESBL genes were bla CTX-M-27 (134/307, 43.6%) and bla CTX-M-15 (134/307, 43.6%). Among the environmental isolates, bla CTX-M-15 (28/45, 62.2%) was the most prevalent gene. A core SNP analysis of these isolates suggested that some strains were shared between humans and the local river. These results highlight the importance of understanding different transmission pathways for the spread of ESBL-producing E. coli.
  • Item
    Population Structure and Antimicrobial Resistance in Campylobacter jejuni and C. coli Isolated from Humans with Diarrhea and from Poultry, East Africa.
    (Centers for Disease Control and Prevention, 2024-10) French NP; Thomas KM; Amani NB; Benschop J; Bigogo GM; Cleaveland S; Fayaz A; Hugho EA; Karimuribo ED; Kasagama E; Maganga R; Melubo ML; Midwinter AC; Mmbaga BT; Mosha VV; Mshana FI; Munyua P; Ochieng JB; Rogers L; Sindiyo E; Swai ES; Verani JR; Widdowson M-A; Wilkinson DA; Kazwala RR; Crump JA; Zadoks RN
    Campylobacteriosis and antimicrobial resistance (AMR) are global public health concerns. Africa is estimated to have the world's highest incidence of campylobacteriosis and a relatively high prevalence of AMR in Campylobacter spp. from humans and animals. Few studies have compared Campylobacter spp. isolated from humans and poultry in Africa using whole-genome sequencing and antimicrobial susceptibility testing. We explored the population structure and AMR of 178 Campylobacter isolates from East Africa, 81 from patients with diarrhea in Kenya and 97 from 56 poultry samples in Tanzania, collected during 2006-2017. Sequence type diversity was high in both poultry and human isolates, with some sequence types in common. The estimated prevalence of multidrug resistance, defined as resistance to >3 antimicrobial classes, was higher in poultry isolates (40.9%, 95% credible interval 23.6%-59.4%) than in human isolates (2.5%, 95% credible interval 0.3%-6.8%), underlining the importance of antimicrobial stewardship in livestock systems.