Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
2 results
Search Results
Item Modeling the feasibility of fermentation-produced protein at a globally relevant scale(Frontiers Media S.A., 2024-07-10) Fletcher AJ; Smith NW; Hill JP; McNabb WCIntroduction: Fermentation-produced protein (FPP) is gaining global interest as a means of protein production with potentially lower cost and environmental footprint than conventionally-produced animal-sourced proteins. However, estimates on the potential performance of FPP vary substantially, limiting assessment of its scalability and utility. Methods: We integrate life cycle analysis data with nutritional and economic data in an interactive online tool, simulating the requirements and consequences of fermentation at a globally-relevant scale. Results: The tool demonstrates that production of an additional 18 million tons of protein annually via fermentation (~10% of 2020 global consumption) would necessitate 10–25 million hectares of feedstock cropland expansion/reallocation, utilize up to 1% of global electricity generation, produce 159 million tons CO2 equivalents, and have a total process input cost of 53.77 billion USD, with a negligible impact on nutrient supply beyond protein. Discussion: This tool should be used to inform the debate on the future use of fermentation in the food system.Item Estimating cropland requirements for global food system scenario modeling(Frontiers Media S.A., 2022-12-16) Smith NW; Fletcher AJ; Millard P; Hill JP; McNabb WC; Ridoutt BGIntroduction: The production of plant crops is foundational to the global food system. With the need for this system to become more sustainable while feeding an increasing global population, tools to investigate future food system scenarios can be useful to aid decision making, but are often limited to a calorie- or protein-centric view of human nutrition. Methods: Here, a mathematical model for forecasting the future cropland requirement to produce a given quantity of crop mass is presented in conjunction with the DELTA Model®: an existing food system scenario model calculating global availability of 29 nutrients against human requirements. The model uses national crop yield data to assign yield metrics for 137 crops. Results: The crops with the greatest variation between high and low yielding production were specific nuts, fruits, and vegetables of minor significance to global nutrient availability. The nut crop group showed the greatest overall yield variation between countries, and thus the greatest uncertainty when forecasting the cropland requirement for future increases in production. Sugar crops showed the least overall yield variation. The greatest potential for increasing global food production by improving poor yielding production was found for the most widely grown crops: maize, wheat, and rice, which were also demonstrated to be of high nutritional significance. Discussion: The combined cropland and nutrient availability model allowed the contribution of plant production to global nutrition to be quantified, and the cropland requirement of future food production scenarios to be estimated. The unified cropland estimation and nutrient availability model presented here is an intuitive and broadly applicable tool for use in global food system scenario modeling. It should benefit future research and policy making by demonstrating the implications for human nutrition of changes to crop production, and conversely the implications for cropland requirement of food production scenarios aimed at improving nutrition.
