Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
4 results
Search Results
Item Source attribution of campylobacteriosis in Australia, 2017-2019.(John Wiley and Sons, Inc., 2023-12-01) McLure A; Smith JJ; Firestone SM; Kirk MD; French N; Fearnley E; Wallace R; Valcanis M; Bulach D; Moffatt CRM; Selvey LA; Jennison A; Cribb DM; Glass KCampylobacter jejuni and Campylobacter coli infections are the leading cause of foodborne gastroenteritis in high-income countries. Campylobacter colonizes a variety of warm-blooded hosts that are reservoirs for human campylobacteriosis. The proportions of Australian cases attributable to different animal reservoirs are unknown but can be estimated by comparing the frequency of different sequence types in cases and reservoirs. Campylobacter isolates were obtained from notified human cases and raw meat and offal from the major livestock in Australia between 2017 and 2019. Isolates were typed using multi-locus sequence genotyping. We used Bayesian source attribution models including the asymmetric island model, the modified Hald model, and their generalizations. Some models included an "unsampled" source to estimate the proportion of cases attributable to wild, feral, or domestic animal reservoirs not sampled in our study. Model fits were compared using the Watanabe-Akaike information criterion. We included 612 food and 710 human case isolates. The best fitting models attributed >80% of Campylobacter cases to chickens, with a greater proportion of C. coli (>84%) than C. jejuni (>77%). The best fitting model that included an unsampled source attributed 14% (95% credible interval [CrI]: 0.3%-32%) to the unsampled source and only 2% to ruminants (95% CrI: 0.3%-12%) and 2% to pigs (95% CrI: 0.2%-11%) The best fitting model that did not include an unsampled source attributed 12% to ruminants (95% CrI: 1.3%-33%) and 6% to pigs (95% CrI: 1.1%-19%). Chickens were the leading source of human Campylobacter infections in Australia in 2017-2019 and should remain the focus of interventions to reduce burden.Item Dientamoeba fragilis associated with microbiome diversity changes in acute gastroenteritis patients.(Elsevier B.V., 2023-12-01) Muhsin-Sharafaldine M-R; Abdel Rahman L; Suwanarusk R; Grant J; Parslow G; French N; Tan KSW; Russell B; Morgan XC; Ussher JEThis study examined the correlation between intestinal protozoans and the bacterial microbiome in faecal samples collected from 463 patients in New Zealand who were diagnosed with gastroenteritis. In comparison to traditional microscopic diagnosis methods, Multiplexed-tandem PCR proved to be more effective in detecting intestinal parasites. Among the identified protozoans, Blastocystis sp. and Dientamoeba fragilis were the most prevalent. Notably, D. fragilis was significantly associated with an increase in the alpha-diversity of host prokaryotic microbes. Although the exact role of Blastocystis sp. and D. fragilis as the primary cause of gastroenteritis remains debatable, our data indicates a substantial correlation between these protozoans and the prokaryote microbiome of their hosts, particularly when compared to other protists or patients with gastroenteritis but no detectable parasitic cause. These findings underscore the significance of comprehending the contributions of intestinal protozoans, specifically D. fragilis, to the development of gastroenteritis and their potential implications for disease management.Item Prevalence and Load of the Campylobacter Genus in Infants and Associated Household Contacts in Rural Eastern Ethiopia: a Longitudinal Study from the Campylobacter Genomics and Environmental Enteric Dysfunction (CAGED) Project(American Society for Microbiology, 2023-07-26) Deblais L; Ojeda A; Brhane M; Mummed B; Hassen KA; Ahmedo BU; Weldesenbet YD; Amin JK; Ahmed IA; Usmane IA; Yusuf EA; Seran AJ; Abrahim FI; Game HT; Mummed BA; Usmail MM; Umer KA; Dawid MM; Gebreyes W; French N; Hassen JY; Roba KT; Mohammed A; Yimer G; Saleem C; Chen D; Singh N; Manary MJ; McKune SL; Havelaar AH; Rajashekara G; Elkins CAIn our previous cross-sectional study, multiple species of Campylobacter were detected (88%) in stool samples from children (12 to 14 months of age) in rural eastern Ethiopia. This study assessed the temporal fecal carriage of Campylobacter in infants and identified putative reservoirs associated with these infections in infants from the same region. The prevalence and load of Campylobacter were determined using genus-specific real-time PCR. Stool samples from 106 infants (n = 1,073) were collected monthly from birth until 376 days of age (DOA). Human stool samples (mothers and siblings), livestock feces (cattle, chickens, goats, and sheep), and environmental samples (soil and drinking water) from the 106 households were collected twice per household (n = 1,644). Campylobacter was most prevalent in livestock feces (goats, 99%; sheep, 98%; cattle, 99%; chickens, 93%), followed by human stool samples (siblings, 91%; mothers, 83%; infants, 64%) and environmental samples (soil, 58%; drinking water, 43%). The prevalence of Campylobacter in infant stool samples significantly increased with age, from 30% at 27 DOA to 89% at 360 DOA (1% increase/day in the odds of being colonized) (P < 0.001). The Campylobacter load increased linearly (P < 0.001) with age from 2.95 logs at 25 DOA to 4.13 logs at 360 DOA. Within a household, the Campylobacter load in infant stool samples was positively correlated with the load in mother stool samples (r2 = 0.18) and soil collected inside the house (r2 = 0.36), which were in turn both correlated with Campylobacter loads in chicken and cattle feces (0.60 < r2 < 0.63) (P < 0.01). In conclusion, a high proportion of infants are infected with Campylobacter in eastern Ethiopia, and contact with the mother and contaminated soil may be associated with early infections. IMPORTANCE A high Campylobacter prevalence during early childhood has been associated with environmental enteric dysfunction (EED) and stunting, especially in low-resource settings. Our previous study demonstrated that Campylobacter was frequently found (88%) in children from eastern Ethiopia; however, little is known about potential Campylobacter reservoirs and transmission pathways leading to infection of infants by Campylobacter during early growth. In the longitudinal study presented here, Campylobacter was frequently detected in infants within the 106 surveyed households from eastern Ethiopia, and the prevalence was age dependent. Furthermore, preliminary analyses highlighted the potential role of the mother, soil, and livestock in the transmission of Campylobacter to the infant. Further work will explore the species and genetic composition of Campylobacter in infants and putative reservoirs using PCR and whole-genome and metagenomic sequencing. The findings from these studies can lead to the development of interventions to minimize the risk of transmission of Campylobacter to infants and, potentially, EED and stunting.Item Dairy Cattle Density and Temporal Patterns of Human Campylobacteriosis and Cryptosporidiosis in New Zealand(Springer Nature Switzerland AG on behalf of the EcoHealth Alliance, 2022-06-10) Grout L; Marshall J; Hales S; Baker MG; French NPublic health risks associated with the intensification of dairy farming are an emerging concern. Dairy cattle are a reservoir for a number of pathogens that can cause human illness. This study examined the spatial distribution of dairy cattle density and explored temporal patterns of human campylobacteriosis and cryptosporidiosis notifications in New Zealand from 1997 to 2015. Maps of dairy cattle density were produced, and temporal patterns of disease rates were assessed for urban versus rural areas and for areas with different dairy cattle densities using descriptive temporal analyses. Campylobacteriosis and cryptosporidiosis rates displayed strong seasonal patterns, with highest rates in spring in rural areas and, for campylobacteriosis, summer in urban areas. Increases in rural cases often preceded increases in urban cases. Furthermore, disease rates in areas with higher dairy cattle densities tended to peak before areas with low densities or no dairy cattle. Infected dairy calves may be a direct or indirect source of campylobacteriosis or cryptosporidiosis infection in humans through environmental or occupational exposure routes, including contact with animals or feces, recreational contact with contaminated waterways, and consumption of untreated drinking water. These results have public health implications for populations living, working, or recreating in proximity to dairy farms.
