Journal Articles
Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915
Browse
3 results
Search Results
Item Prevalence of the ABCB1-1Δ gene mutation in a sample of New Zealand Huntaway dogs(Informa UK Limited, trading as Taylor & Francis Group, 2023-03-13) Gedye K; Poole-Crowe E; Shepherd M; Wilding A; Parton K; Lopez-Villalobos N; Cave NAIMS: To determine the prevalence of the ATP Binding Cassette Subfamily B Member 1-1Δ mutation (ABCB1-1Δ; previously Multidrug Resistance 1 (MDR1) mutation) in a cohort of New Zealand Huntaway dogs. MATERIALS AND METHODS: Samples were opportunistically collected from Huntaway dogs (n = 189) from throughout New Zealand. Buccal swabs were collected from 42 Huntaways from the Wairarapa region and 147 blood samples from Huntaways from the Gisborne, Waikato, Manawatū/Whanganui, Hawkes Bay, Canterbury and Otago regions. DNA was extracted from all samples and tested for the presence of the ABCB1-1Δ allele. RESULTS: Of 189 Huntaway dogs that were tested, two were found to be heterozygous carriers of the ABCB1-1Δ allele and the remaining 187/189 dogs were homozygous for the wild type allele. No dogs homozygous for the mutation were identified. CONCLUSIONS AND CLINICAL RELEVANCE: The results of this study show that the ABCB1-1Δ allele is present in Huntaway dogs. The low prevalence in this convenience sample suggests that the prevalence of this allele in the Huntaway population is likely to be low. We recommend that veterinary clinicians discuss the potential for this mutation in Huntaways with dog owners including the clinical implications for dogs that are homozygous for the mutated allele and the potential for testing for the mutation, as they would do for other known mutations.Item Genomic Characterization of Canis Familiaris Papillomavirus Type 25, a Novel Papillomavirus Associated with a Viral Plaque from the Pinna of a Dog(MDPI (Basel, Switzerland), 2023-06-02) Munday JS; Gedye K; Knox MA; Robinson L; Lin XA 14-year-old West Highland White terrier dog developed multiple raised plaques that were confined to the concave surface of the right pinna. Histology allowed a diagnosis of viral plaque, although the lesions contained some unusual microscopic features. A papillomaviral (PV) DNA sequence was amplified from the plaque using consensus PCR primers. The amplified sequence was used as a template to design 'outward facing' PCR primers, which allowed amplification of the complete PV DNA sequence. The sequence was 7778 bp and was predicted to code for five early genes and two late genes. The ORF L1 showed the highest (83.9%) similarity to CPV15, and phylogenetic analysis revealed the novel PV clustered with the species 3 ChiPVs. The novel PV was designated as canine papillomavirus (CPV) type 25. As CPV25 was not previously detected in a canine viral plaque, this PV type may be a rare cause of skin disease in dogs. However, as plaques that remain confined to the pinna were not previously reported in dogs, it is possible that CPV25 could be more common in plaques from this area of skin. The findings from this case expand the number of PV types that cause disease in dogs. Evidence from this case suggests that, compared to the other canine ChiPV types, infection by CPV25 results in viral plaques in atypical locations with unusual histological features.Item Genomic Characterisation of Canis Familiaris Papillomavirus Type 24, a Novel Papillomavirus Associated with Extensive Pigmented Plaque Formation in a Pug Dog(MDPI (Basel, Switzerland), 2022-10-26) Munday JS; Gedye K; Knox MA; Ravens P; Lin X; Dalianis TNumerous large dark plaques developed over the ventrum, legs and head of a 9-year-old pug dog over a 4-year-period. Histology confirmed a diagnosis of viral pigmented plaque and a short section of a novel papillomavirus (PV) type was amplified using consensus PCR primers. Taking advantage of the circular nature of PV DNA, 'outward facing' PCR primers allowed amplification of the full sequence. As this is the 24th PV known to infect dogs, the novel PV was designated canine papillomavirus (CPV) type 24. The CPV24 genome contained putative coding regions for 5 early proteins and 2 late ones. The CPV24 open reading frame L1 showed the highest (78.2%) similarity to CPV4 and phylogenetic analysis showed that CPV24 clustered with CPV4 and CPV16 suggesting CPV24 is the third species 2 Chipapillomavirus type identified in dogs. This is the third report of extensive pigmented plaques covering a high proportion of the skin. Both previous cases were caused CPV4 and, considering the high genetic similarity between CPV4 and CP24, infection by these CPV types may predispose to more severe clinical disease. In addition, as plaques caused by CPV16 appear more likely to progress to neoplasia, the detection of a species 2 Chipapillomavirus within a pigmented plaque may indicate the potential for more severe disease.
