Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    X-linked myotubular myopathy associated with an MTM1 variant in a Maine coon cat
    (Wiley Periodicals LLC on behalf of American College of Veterinary Internal Medicine, 2022-09-26) Kopke MA; Shelton GD; Lyons LA; Wall MJ; Pemberton S; Gedye KR; Owen R; Guo LT; Buckley RM; Valencia JA; 99 Lives Consortium; Jones BR
    OBJECTIVE: Describe the clinical course and diagnostic and genetic findings in a cat with X-linked myotubular myopathy. CASE SUMMARY: A 7-month-old male Maine coon was evaluated for progressively worsening gait abnormalities and generalized weakness. Neurolocalization was to the neuromuscular system. Genetic testing for spinal muscular atrophy (LIX1) was negative. Given the progressive nature and suspected poor long-term prognosis, the owners elected euthanasia. Histopathology of skeletal muscle obtained post-mortem disclosed numerous rounded atrophic or hypotrophic fibers with internal nuclei or central basophilic staining. Using oxidative reactions mediated by cytochrome C oxidase and succinic dehydrogenase, scattered myofibers were observed to have central dark staining structures and a "ring-like" appearance. Given the cat's age and clinical history, a congenital myopathy was considered most likely, with the central nuclei and "ring-like" changes consistent with either centronuclear or myotubular myopathy. Whole genome sequencing identified an underlying missense variant in myotubularin 1 (MTM1), a known candidate gene for X-linked myotubular myopathy. NEW OR UNIQUE INFORMATION PROVIDED: This case is the first report of X-linked myotubular myopathy in a cat with an MTM1 missense mutation. Maine coon cat breeders may consider screening for this variant to prevent production of affected cats and to eradicate the variant from the breeding population.
  • Item
    One dog's waste is another dog's wealth: A pilot study of fecal microbiota transplantation in dogs with acute hemorrhagic diarrhea syndrome
    (PLOS, 2021-04-19) Gal A; Barko PC; Biggs PJ; Gedye KR; Midwinter AC; Williams DA; Burchell RK; Pazzi P; Carbonero F
    Canine acute hemorrhagic diarrhea syndrome (AHDS) has been associated in some studies with Clostridioides perfringens overgrowth and toxin-mediated necrosis of the intestinal mucosa. We aimed to determine the effect of a single fecal microbiota transplantation (FMT) on clinical scores and fecal microbiomes of 1 and 7 dogs with AHDS from New Zealand and South Africa. We hypothesized that FMT would improve AHDS clinical scores and increase microbiota alpha-diversity and short-chain fatty acid (SCFA)-producing microbial communities' abundances in dogs with AHDS after FMT. We sequenced the V3-V4 region of the 16S-rRNA gene in the feces of AHDS FMT-recipients and sham-treated control dogs, and their healthy donors at admission, discharge, and 30 days post-discharge. There were no significant differences in median AHDS clinical scores between FMT-recipients and sham-treated controls at admission or discharge (P = 0.22, P = 0.41). At admission, the Shannon diversity index (SDI) was lower in AHDS dogs than healthy donors (P = 0.002). The SDI did not change from admission to 30 days in sham-treated dogs yet increased in FMT-recipients from admission to discharge (P = 0.04) to levels not different than donors (P = 0.33) but significantly higher than sham-treated controls (P = 0.002). At 30 days, the SDI did not differ between FMT recipients, sham-treated controls, and donors (P = 0.88). Principal coordinate analysis of the Bray-Curtis index separated post-FMT and donor dogs from pre-FMT and sham-treated dogs (P = 0.009) because of increased SCFA-producing genera's abundances after FMT. A single co-abundance subnetwork contained many of the same OTUs found to be differentially abundant in FMT-recipients, and the abundance of this module was increased in FMT-recipients at discharge and 30 days, compared to sham-treated controls. We conclude in this small pilot study FMT did not have any clinical benefit. A single FMT procedure has the potential to increase bacterial communities of SCFA-producing genera important for intestinal health up to 30 days post-FMT.