Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Dietary patterns influencing the human colonic microbiota from infancy to centenarian age: a narrative review
    (Frontiers Media S A, 2025-06-04) Geniselli da Silva V; Roy NC; Smith NW; Wall C; Mullaney JA; McNabb WC; Benítez-Páez A
    Our dietary choices not only affect our body but also shape the microbial community inhabiting our large intestine. The colonic microbiota strongly influences our physiology, playing a crucial role in both disease prevention and development. Hence, dietary strategies to modulate colonic microbes have gained notable attention. However, most diet-colonic microbiota research has focused on adults, often neglecting other key life stages, such as infancy and older adulthood. In this narrative review, we explore the impact of various dietary patterns on the colonic microbiota from early infancy to centenarian age, aiming to identify age-specific diets promoting health and well-being by nourishing the microbiota. Diversified diets rich in fruits, vegetables, and whole grains, along with daily consumption of fermented foods, and moderate amounts of fish and lean meats (two to four times a week), increase colonic microbial diversity, the abundance of saccharolytic taxa, and the production of beneficial microbial metabolites. Most of the current knowledge of diet-microbiota interactions is limited to studies using fecal samples as a proxy. Future directions in colonic microbiota research include personalized in silico simulations to predict the impact of diets on colonic microbes. Complementary to traditional methodologies, modeling has the potential to reduce the costs of colonic microbiota investigations, accelerate our understanding of diet-microbiota interactions, and contribute to the advancement of personalized nutrition across various life stages.
  • Item
    Complementary foods in infants: an in vitro study of the faecal microbial composition and organic acid production
    (Royal Society of Chemistry, 2025-05-07) Geniselli da Silva V; Mullaney JA; Roy NC; Smith NW; Wall C; Tatton CJ; McNabb WC
    The transition from breastmilk to complementary foods is critical for maturing the colonic microbiota of infants. Dietary choices at weaning can lead to long-lasting microbial changes, potentially influencing health later in life. However, the weaning phase remains underexplored in colonic microbiome research, and the current understanding of how complementary foods impact the infant's colonic microbiota is limited. To address this knowledge gap, this study assessed the influence of 13 food ingredients on the in vitro microbial composition and production of organic acids by the faecal microbiota in New Zealand infants aged 5 to 11 months. To better represent real feeding practices, ingredients were combined with infant formula, other complementary foods, or both infant formula and other foods. Among the individual food ingredients, fermentation with peeled kūmara (sweet potato) increased the production of lactate and the relative abundance of the genus Enterococcus. Fermentation with blackcurrants, strawberries, or raspberries enhanced acetate and propionate production. Additionally, fermentation with blackcurrants increased the relative abundance of the genus Parabacteroides, while raspberry fermentation increased the relative abundance of the genera Parabacteroides and Eubacterium. When combined with infant formula or with blackcurrants, fermenting black beans increased butyrate production and stimulated the relative abundance of Clostridium sensu stricto 1. These foods are promising candidates for future clinical trials.
  • Item
    The effect of complementary foods on the colonic microbiota of weaning infants: a systematic review.
    (Taylor & Francis Group, LLC, 2024-12-16) Geniselli da Silva V; Tonkie JN; Roy NC; Smith NW; Wall C; Kruger MC; Mullaney JA; McNabb WC
    The transition from breastmilk to solid foods (weaning) is a decisive stage for the development of the colonic microbiota. However, little is known about how complementary foods influence the composition and function of the colonic microbiota in infants. This systematic review collected evidence of the effect of individual foods on the fecal microbiota of weaning infants (4-12 months old) using five databases: PubMed, CENTRAL, Scopus, Web of Science, and ScienceDirect. A total of 3625 records were examined, and seven randomized clinical trials met the review's eligibility criteria. Altogether, 983 participants were enrolled, and plant-based foods, meats, and dairy products were used as interventions. Wholegrain cereal increased the fecal abundance of the order Bacteroidales in the two included studies. Pureed beef increased the fecal abundances of the genus Bacteroides and the Clostridium XIVa group, as well as microbial richness in two of the three included studies. However, the conclusions of this review are limited by the small number of studies included. No conclusions could be drawn about the impact of complementary foods on fecal metabolites. Further clinical trials assessing the effect of dietary interventions on both fecal microbial composition and function are needed to fill this knowledge gap in infant nutrition.