Journal Articles

Permanent URI for this collectionhttps://mro.massey.ac.nz/handle/10179/7915

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    20 years later: unravelling the genomic success of New Zealand’s home-grown AK3 community-associated methicillin-resistant Staphylococcus aureus
    (Microbiology Society, 2025-07-25) White RT; Bakker S; Bloomfield M; Burton M; Elvy J; Eustace A; French NP; Grant J; Greening SS; Grinberg A; Harland C; Hutton S; Karkaba A; Martin J; Matthews B; Miller H; Straub C; Tarring C; Taylor WT; Ussher J; Velasco C; Voss EM; Dyet K
    Methicillin-resistant Staphylococcus aureus (MRSA) represents a significant public health challenge. In New Zealand, the community-associated MRSA sequence type (ST)5, carrying the staphylococcal cassette chromosome mec (SCCmec) type IV genetic element (which confers methicillin resistance), has been predominant since its detection in 2005. Known informally as the AK3 strain, it also exhibits resistance to fusidic acid. Here, we investigated the genomic evolution of the AK3 strain by analysing 397 genomes, comprising 361 MRSA and 36 closely related methicillin-susceptible S. aureus (MSSA) genomes, including 285 recently sequenced isolates from New Zealand spanning 2020 (n=30), 2021 (n=77), 2022 (n=88), 2023 (n=73) and 2024 (n=17). Phylogenetic analysis revealed that the AK3 strain evolved through stepwise acquisition of mobile genetic elements, with an MSSA ancestor likely introduced to New Zealand in the late 1970s. The lineage first acquired a SaPITokyo12571-like pathogenicity island, which contains the staphylococcal enterotoxin C bovine variant (sec-bov) and an enterotoxin-like protein (sel), between 1984 and 1991. This was followed by the integration of SCCmec type IV and adjacent fusidic acid resistance operon between 1997 and 2000. This timing coincides with increased community fusidic acid use in New Zealand. The AK3 strain then diversified into three major clades, spreading throughout New Zealand and Australia, with sporadic detection in European countries and Samoa. Our findings demonstrate how the sequential acquisition of mobile genetic elements, combined with antibiotic selection pressure, likely contributed to the successful emergence of AK3 and its spread in the South Pacific region.
  • Item
    The Host Adaptation of Staphylococcus aureus to Farmed Ruminants in New Zealand, With Special Reference to Clonal Complex 1
    (John Wiley and Sons Ltd, 2025-06) Nesaraj J; Grinberg A; Laven R; Chanyi R; Altermann E; Bandi C; Biggs PJ
    Genetic features of host adaptation of S. aureus to ruminants have been extensively studied, but the extent to which this adaptation occurs in nature remains unknown. In New Zealand, clonal complex 1 (CC1) is among the most common lineages in humans and the dominant lineage in cattle, enabling between-, and within-CC genomic comparisons of epidemiologically cohesive samples of isolates. We assessed the following genomic benchmarks of host adaptation to ruminants in 277 S. aureus from cattle, small ruminants, humans, and pets: 1, phylogenetic clustering of ruminant strains; 2, abundance of homo-specific ruminant-adaptive factors, and 3, scarcity of heterospecific factors. The genomic comparisons were complemented by comparative analyses of the metabolism of carbon sources that abound in ruminant milk. We identified features fulfilling the three benchmarks in virtually all ruminant isolates, including CC1. Data suggest the virulomes adapt to the ruminant niche sensu lato accross CCs. CC1 forms a ruminant-adapted clade that appears better equipped to utilise milk carbon sources than human CC1. Strain flow across the human–ruminant interface appears to only occur occasionally. Taken together, the results suggest a specialisation, rather than mere adaptation, clarifying why zoonotic and zoo-anthroponotic S. aureus transmission between ruminants and humans has hardly ever been reported.
  • Item
    An observational study of farmer-reported clinical mastitis in New Zealand dairy ewes.
    (Taylor and Francis Group, 2024-07-01) Chambers G; Laven R; Grinberg A; Ridler A; Velathanthiri N
    AIMS: To describe the incidence, aetiology, treatment, and outcomes of farmer-reported clinical mastitis on New Zealand dairy sheep farms. METHODS: A prospective cohort study was conducted on 20 spring-lambing New Zealand sheep milking farms over the 2022-2023 season. Clinical mastitis was defined as a change in the appearance of milk and/or signs of inflammation in the gland. Farmers were required to report all cases of clinical mastitis and collect information on affected ewes' demographics, clinical features, treatments (where applicable), and outcomes. Milk samples from mastitic glands were submitted for microbiological culture and identification by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF). RESULTS: Partial or complete clinical mastitis data were available for 236 cases from 221 ewes on 18/20 study farms. Clinical mastitis was diagnosed in 0-6% of ewes at the farm level, with an overall incidence of 1.8 (95% CI = 1.0-3.2)% using the study data, or 2.3 (95% CI = 1.6-3.3)% using the study data and farmer estimates that included unreported cases. Cases occurred mostly in early lactation, with 59% detected during the lambing period (August-October), at a median of 7 (IQR 3, 40) days in milk. The majority of cases featured clots in the milk (59%), swelling (55%), and unevenness (71%) of the glands. Pyrexia (rectal temperature ≥ 40.0°C) was diagnosed in 25% of cases and depression (lethargy, inappetence, or inability to stand) in 26% of cases. Treatment was given to 46% of cases, with tylosin being the most commonly used treatment (50% of treated cases). The most common outcome was immediate drying off to be culled without treatment (32%), followed by still milking and recovered but with lasting problems (25%). Nearly half of all the milk samples submitted were culture negative. Streptococcus uberis (14%), non-aureus staphylococci (12%), and Staphylococcus aureus (11%) were the most common isolates, found on 12, 8 and 8 of the 16 farms with microbiological data, respectively. CONCLUSIONS: Clinical mastitis affected up to 6% of ewes at the farm level. Systemic signs were observed in one quarter of affected ewes, suggesting a role for supportive treatment. Clinical mastitis can be severe and challenging to fully resolve in New Zealand dairy sheep. CLINICAL RELEVANCE: This is the first systematic study of clinical mastitis in New Zealand dairy ewes. It provides baseline information specific to New Zealand conditions for farmers, veterinarians, and other advisors to guide the management of mastitis for the relatively new dairy sheep industry in New Zealand.
  • Item
    Staphylococcus microti Strains Isolated from an Italian Mediterranean Buffalo Herd
    (MDPI (Basel, Switzerland), 2023-01-03) Ambrosio M; Nocera FP; Garofalo F; De Luca P; Grinberg A; De Martino L; Nielsen S
    S. microti is a new species among non-aureus staphylococci (NAS) frequently found in bovine milk samples and associated with subclinical mastitis (SCM). The aim of this study was to analyze the presence of S. microti in 200 composite milk samples and 104 milking parlor surface swabs collected at a buffalo farm in Southern Italy to define its presence in milk and a milking parlor environment. The samples were inoculated onto different agar plates, and the isolates were identified by MALDI-TOF MS. The strains identified as S. microti (54/304 samples, 17.8%) were collected, and their purified genomic DNA was subjected to PCR amplification and whole 16S rRNA gene sequencing. Furthermore, their phenotypic resistance profiles were evaluated by a disk diffusion method, and the genotypic characterization of the tetracycline resistance was performed for the tetM and tetK genes by multiplex PCR. Four and forty-seven S. microti isolates from milk samples of lactating animals with subclinical mastitis (SCM) and intramammary infection (IMI), respectively, and three isolates from milking parlor surfaces were recovered. The genomic DNA was purified from the bacterial isolates, and the amplification and sequencing of the 16S gene further supported the proteomic identification as S. microti. No clinical mastitis was detected in the herd during the study period. The antimicrobial susceptibility testing revealed a worrisome 100% resistance to tetracyclines, genotypically mediated by the tetM gene for all strains. This study highlights that S. microti may be commonly isolated from dairy buffalo milk and milking parlor equipment. Its association with SCM or IMI remains to be established.